Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1054064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438143

RESUMEN

Lilium pumilum is an important ornamental, culinary and medicinal bulbous plants with salt tolerance. However, salt tolerance of lily, particularly the bulb, has been studied relatively little, which brings challenges to the cultivation of lily varieties with high salt tolerance. Here, we performed transcriptome sequencing on the bulb organs of L. pumilum under salt stress treatment, analyzed differential gene expressed levels and then identified several key genes associated with salt stress tolerance at genome-wide scale. For the first time, we revealed the obvious response against salt stress for L. pumilum bulb organs, while distinct from those for root organs. Several key genes obtained through transcriptome analysis and DEG screening include NF-YB3 transcription factor, metallothionein type 2 protein, vicilin like seed storage protein and bidirectional sugar transporter SWEET14. Rather than typical ROS scavengers like superoxide dismutase, peroxidase, and glutathione transferase, non-typical ROS scavengers such as the metallothionein type 2 protein, and vicilin like seed storage protein were upregulated in our work. The bidirectional sugar transporter SWEET14 protein and the hormone signaling proteins such as E3-ubiquitin protein ligases, PYL4 and protein phosphatase 2C were also upregulated, suggesting the role of sugars and hormones in the bulb organ responses to salt stress. Co-expression analysis of the DEGs further confirmed that NF-YB3 transcription factor acted as a hub gene, suggesting that salt stress can promote flowering of L. pumilum. Taken together, we identified important candidate genes associated with salt tolerance of the L. pumilum bulb organs, which may provide the excellent basis for further in-depth salt tolerance mechanisms of the lily bulbs.

2.
RSC Adv ; 12(20): 12932-12937, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35496336

RESUMEN

New solid acid catalysts were prepared by bisphenol A, paraformaldehyde and chlorosulfonic acid, and applied to hydroxylalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and cyclohexanone. After optimizing the reaction conditions, the conversion of 2-MF reached 99% and the yield of 5,5'-(cyclohexane-1,1-diyl)bis(2-methylfuran) acquired 98%. The activity and catalytic efficiency were higher than those of Amberlyst 15 and Amberlyst 36 resins, which could be rationalized by high acid strength. At the same time, the catalysts were characterized by acid-base titration and FTIR. Hydrodeoxygenation (HDO) of HAA products of 2-methylfuran and cyclopentanone were processed on the Ni/SiO2 catalyst prepared by wet impregnation method to further convert into aviation kerosene, and the yield reached 93%.

3.
J Plant Physiol ; 270: 153635, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124291

RESUMEN

NAC transcription factors have multiple biological functions in plants. In this study, a new NAC transcription factor, LpNAC6, was cloned from Lilium pumilum, and its salt and drought resistance functions were identified. We treated LpNAC6 transgenic tobacco plants with different intensities of alkali and drought stress. Results showed that LpNAC6 transgenic tobacco had enhanced alkali tolerance, but decreased drought tolerance. Antioxidant enzyme (SOD, POD, CAT) activity, chlorophyll content, proline content, and photosynthetic capacity of transgenic tobacco were significantly higher than those of wild-type tobacco, while the contents of MDA, H2O2, and O2- were significantly lower than those of wild-type tobacco. The expression level of stress-related genes in transgenic tobacco increased significantly, and the alkali tolerance was enhanced, but the opposite was true under drought stress. Our findings suggest that LpNAC6 has a reverse regulatory effect on alkaline and drought tolerance in plants, which is of great significance for plant screening and stress tolerance regulation of transgenic plants in arid saline-alkali land.

4.
Front Plant Sci ; 13: 993841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119598

RESUMEN

Lilium pumilum is a perennial herb with ornamental edible and medicinal value. It is an excellent wild germplasm resource with wide distribution and strong resistance. The NAC family of transcription factors is unique to higher plants. The NAC family plays a regulatory role in plant growth and development and participates in plant responses to biotic and abiotic stresses. The LpNAC17 gene of L. pumilum was cloned and transformed into tobacco to investigate the response of transgenic tobacco to salt stress. The results showed that the net photosynthetic rate and contents of chlorophyll in LpNAC17 over-expressed tobacco were higher than those in the control plants, while the stomatal conductance, transpiration rate and intercellular CO2 concentration were lower than those in the controls. The activity of superoxide dismutase, peroxidase, catalase, and the content of proline in LpNAC17 over-expressed tobacco were higher than those in the controls, while the content of malondialdehyde, superoxide anion, and hydrogen peroxide were lower than that in the control. Nitro-blue tetrazolium staining and 3,3'-diaminobenzidine tissue localization showed that the contents of O 2 - and H2O2 in transgenic tobacco was lower than in the controls. The expression levels of NtSOD, NtPOD, NtCAT, NtHAK1, NtPMA4, and NtSOS1 in the transgenic tobacco were higher than those in the controls. Therefore, this study provides a gene source for molecular breeding of salt-tolerant plants through genetic engineering, and lays a foundation for further research on salt-tolerant Lily.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA