Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856632

RESUMEN

Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.

2.
J Med Genet ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816193

RESUMEN

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.

3.
Opt Lett ; 49(11): 2962-2965, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824303

RESUMEN

A novel, to the best of our knowledge, and compact fiber-optic hydrogen sensor based on light intensity demodulation and controllable optical heating technology is proposed and experimentally investigated. This system employs three photodetectors for optic signal transformation. The first PD is used to receive a little fraction of the amplified spontaneous emission (ASE) for calibration, and the second PD is utilized to detect optic signal reflected by a single mode fiber deposited with WO3-Pd2Pt-Pt composite film. The last PD is utilized to receive the optical power reflected by the short fiber Bragg grating (SFBG) with a central wavelength located in a steep wavelength range (the intensity decreases approximately linearly with the increase of the wavelength) of the ASE light source. A 980 nm laser and proportion integration differentiation (PID) controller were employed to ensure the hydrogen sensitive film working at an operating temperature of 60°C. This sensing system can display a quick response time of 0.4 s toward 10,000 ppm hydrogen in air. In addition, the detection limit of 5 ppm in air can be achieved with this sensing system. The stability of this sensor can be greatly enhanced with a controllable optical heating system, which can greatly promote its potential application in various fields.

4.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1237-1246, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34312671

RESUMEN

SUMOylation of proteins regulates cell behaviors and is reversibly removed by small ubiquitin-like modifier (SUMO)-specific proteases (SENPs). The SENP family member SENP3 is involved in SUMO2/3 deconjugation and has been reported to sense cell stress and accumulate in several human cancer cells and macrophages. We previously reported that Senp3-knockout heterozygous mice showed smaller liver, but the pertinent mechanisms of SENP3 and SUMOylated substrates remain unclear. Thus, in this study, we investigated the interacting proteins with SENP3 and the alteration in hepatocytes treated with the xenobiotic diethylnitrosamine (DEN), which is specifically transformed in the liver and induces DNA double-strand breaks. Our data revealed that a certain amount of SENP3 was present in normal, untreated hepatocytes; however, DEN treatment promoted rapid SENP3 accumulation. SENP3 was mainly localized in the nuclei, and its level was significantly increased in the cytoplasm after 2 h of DEN treatment. The application of the recent proximity-dependent biotinylation (BioID) method led to the identification of 310 SENP3-interacting proteins that were involved in not only gene transcription but also RNA splicing, protein folding, and metabolism. Furthermore, after DEN exposure for a short duration, ribosomal proteins as well as proteins associated with mitochondrial ATP synthesis, membrane transport, and bile acid synthesis, rather than DNA repair proteins, were identified. This study provides insights into the diverse regulatory roles of SENP3, and the BioID method seems to be efficient for identifying physiologically relevant insoluble proteins.


Asunto(s)
Alquilantes/farmacología , Bioensayo/métodos , Biotinilación/métodos , Cisteína Endopeptidasas/metabolismo , Dietilnitrosamina/farmacología , Hepatocitos/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Unión Proteica , Mapas de Interacción de Proteínas/efectos de los fármacos , Sumoilación
5.
Hepatology ; 69(5): 1931-1945, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30584660

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a rapidly growing cause of chronic liver damage, cirrhosis, and hepatocellular carcinoma. How fatty liver pathogenesis is subject to epigenetic regulation is unknown. We hypothesized that chromatin remodeling is important for the pathogenesis of fatty liver disease. AT-rich interactive domain-containing protein 1A (ARID1A), a DNA-binding component of the SWItch/sucrose nonfermentable adenosine triphosphate-dependent chromatin-remodeling complex, contributes to nucleosome repositioning and access by transcriptional regulators. Liver-specific deletion of Arid1a (Arid1a liver knockout [LKO]) caused the development of age-dependent fatty liver disease in mice. Transcriptome analysis revealed up-regulation of lipogenesis and down-regulation of fatty acid oxidation genes. As evidence of direct regulation, ARID1A demonstrated direct binding to the promoters of many of these differentially regulated genes. Additionally, Arid1a LKO mice were more susceptible to high-fat diet-induced liver steatosis and fibrosis. We deleted Pten in combination with Arid1a to synergistically drive fatty liver progression. Inhibition of lipogenesis using CAT-2003, a potent sterol regulatory element-binding protein inhibitor, mediated improvements in markers of fatty liver disease progression in this Arid1a/Pten double knockout model. Conclusion: ARID1A plays a role in the epigenetic regulation of hepatic lipid homeostasis, and its suppression contributes to fatty liver pathogenesis. Combined Arid1a and Pten deletion shows accelerated fatty liver disease progression and is a useful mouse model for studying therapeutic strategies for NASH.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Factores de Transcripción/deficiencia , Animales , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Ácidos Grasos/metabolismo , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
6.
Gut ; 68(7): 1259-1270, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30315093

RESUMEN

OBJECTIVE: ARID1A is commonly mutated in pancreatic ductal adenocarcinoma (PDAC), but the functional effects of ARID1A mutations in the pancreas are unclear. Understanding the molecular mechanisms that drive PDAC formation may lead to novel therapies. DESIGN: Concurrent conditional Arid1a deletion and Kras activation mutations were modelled in mice. Small-interfering RNA (siRNA) and CRISPR/Cas9 were used to abrogate ARID1A in human pancreatic ductal epithelial cells. RESULTS: We found that pancreas-specific Arid1a loss in mice was sufficient to induce inflammation, pancreatic intraepithelial neoplasia (PanIN) and mucinous cysts. Concurrent Kras activation accelerated the development of cysts that resembled intraductal papillary mucinous neoplasm. Lineage-specific Arid1a deletion confirmed compartment-specific tumour-suppressive effects. Duct-specific Arid1a loss promoted dilated ducts with occasional cyst and PDAC formation. Heterozygous acinar-specific Arid1a loss resulted in accelerated PanIN and PDAC formation with worse survival. RNA-seq showed that Arid1a loss induced gene networks associated with Myc activity and protein translation. ARID1A knockdown in human pancreatic ductal epithelial cells induced increased MYC expression and protein synthesis that was abrogated with MYC knockdown. ChIP-seq against H3K27ac demonstrated an increase in activated enhancers/promoters. CONCLUSIONS: Arid1a suppresses pancreatic neoplasia in a compartment-specific manner. In duct cells, this process appears to be associated with MYC-facilitated protein synthesis.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/metabolismo , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción
7.
EMBO J ; 29(22): 3773-86, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-20924358

RESUMEN

The molecular chaperone heat shock protein 90 (Hsp90) and the co-chaperone/ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP) control the turnover of client proteins. How this system decides to stabilize or degrade the client proteins under particular physiological or pathological conditions is unclear. We report here a novel client protein, the SUMO2/3 protease SENP3, that is sophisticatedly regulated by CHIP and Hsp90. SENP3 is maintained at a low basal level under non-stress condition due to Hsp90-independent CHIP-mediated ubiquitination. Upon mild oxidative stress, SENP3 undergoes thiol modification, which recruits Hsp90. Hsp90/SENP3 association protects SENP3 from CHIP-mediated ubiquitination and subsequent degradation, but this effect of Hsp90 requires the presence of CHIP. Our data demonstrate for the first time that CHIP and Hsp90 interplay with a client alternately under non-stress and stress conditions, and the choice between stabilization and degradation is made by the redox state of the client. In addition, enhanced SENP3/Hsp90 association is found in cancer. These findings provide new mechanistic insight into how cells regulate the SUMO protease in response to oxidative stress.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Cisteína/metabolismo , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
8.
J Clin Invest ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38875287

RESUMEN

It is unknown which post-transcriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate post-transcriptional RNA metabolism within ribonucleoprotein networks, are essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to Lin28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 is a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 were able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/b deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.

9.
J Bone Miner Res ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38477755

RESUMEN

Osteoporosis is characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-related bone formation, particularly increased osteoclastogenesis. However, the mechanisms by which epigenetic factors regulate osteoclast precursor differentiation during osteoclastogenesis remain poorly understood. Here, we show that the specific knockout of the chromatin remodeling factor Arid1a in bone marrow-derived macrophages (BMDMs) results in increased bone mass. The loss of Arid1a in BMDM inhibits cell-cell fusion and maturation of osteoclast precursors, thereby suppressing osteoclast differentiation. Mechanistically, Arid1a increases the chromatin access in the gene promoter region of sialic acid-binding Ig-like lectin 15 (Siglec15) by transcription factor Jun/Fos, which results in the upregulation of Siglec15 and promotion of osteoclast differentiation. However, the loss of Arid1a reprograms the chromatin structure to restrict Siglec15 expression in osteoclast precursors, thereby inhibiting BMDM differentiation into mature osteoclasts. Deleting Arid1a after ovariectomy (a model for postmenopausal bone loss) alleviated bone loss and maintained bone mass. In summary, epigenetic reprogramming mediated by Arid1a loss suppresses osteoclast differentiation and may serve as a promising therapeutic strategy for treating bone loss diseases.


Osteoporosis is a common disease, usually diagnosed by decreased bone density and increased fragility. The people with osteoporosis has higher risk of fractures. Nearly one third of the aged people will suffer from osteoporosis-related fractures and even lose their lives because of this. Therefore, there is an urgent need for early intervention and effective treatment options for osteoporosis in the aging population. Bone tissue is a highly dynamic tissue that undergoes continuous remodeling throughout an individual's entire life. The balance of remodeling depends on the bone formation mediated by osteoblasts and bone resorption by osteoclasts. When this balance is disrupted, osteoporosis occurs. Thus, the aim of our research is to explore the behind mechanism of this imbalance. Here, we demonstrate that the loss of Arid1a, a chromatin remodeler, leads to chromatin reprogramming that restricts access to promoters by transcription factors such as Jun/Fos, thereby suppressing osteoclast activation and bone resorption. Our findings offer insights into the epigenetic mechanisms underlying osteoporosis and suggest potential strategies for its prevention and treatment.

10.
EMBO J ; 28(18): 2748-62, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19680224

RESUMEN

The physiological function of Sentrin/SUMO-specific proteases (SENPs) remains largely unexplored, and little is known about the regulation of SENPs themselves. Here, we show that a modest increase of reactive oxygen species (ROS) regulates SENP3 stability and localization. We found that SENP3 is continuously degraded through the ubiquitin-proteasome pathway under basal condition and that ROS inhibit this degradation. Furthermore, ROS causes SENP3 to redistribute from the nucleoli to the nucleoplasm, allowing it to regulate nuclear events. The stabilization and redistribution of SENP3 correlate with an increase in the transcriptional activity of the hypoxia-inducing factor-1 (HIF-1) under mild oxidative stress. ROS-enhanced HIF-1 transactivation is blocked by SENP3 knockdown. The de-SUMOylating activity of SENP3 is required for ROS-induced increase of HIF-1 transactivation, but the true substrate of SENP3 is the co-activator of HIF-1 alpha, p300, rather than HIF-1 alpha itself. Removing SUMO2/3 from p300 enhances its binding to HIF-1 alpha. In vivo nude mouse xenografts overexpressing SENP3 are more angiogenic. Taken together, our results identify SENP3 as a redox sensor that regulates HIF-1 transcriptional activity under oxidative stress through the de-SUMOylation of p300.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estrés Oxidativo , Proteína SUMO-1/metabolismo , Activación Transcripcional , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Oxidación-Reducción , Especies Reactivas de Oxígeno
11.
J Colloid Interface Sci ; 629(Pt B): 227-237, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152579

RESUMEN

With the surging demand for flexible and portable electronic devices featuring high energy and power density, the development of next-generation lightweight, flexible energy storage devices is crucial. However, achieving the expected energy and power density of supercapacitors remains a great challenge. This work reports a facile plasma-enabled method for preparing supercapacitor electrodes made of MoS2 nanosheets grown on flexible and lightweight N-doped carbon cloth (NCC). The MoS2/NCC presents an outstanding specific capacitance of 3834.28 mF/cm2 at 1 mA/cm2 and energy density of 260.94 µWh/cm2 at a power density of 354.48 µW/cm2. An aqueous symmetric supercapacitor fitted with two MoS2/NCC electrodes achieved the maximum energy density of 138.12 µWh/cm2 and the highest power density of 7,417.33 µW/cm2, along with the excellent cycling stability of 83.3 % retention over 10,000 cycles. The high-performance energy storage ASSSs (all-solid-state supercapacitors) are demonstrated to power devices in both rigid and flexible operation modes. This work provides a new perspective for fabricating high-performance all-solid-state flexible supercapacitors for clean energy storage.

12.
Cancer Immunol Res ; 11(5): 583-599, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36921097

RESUMEN

Cyclic GMP-AMP (cGAMP) is a second messenger that activates the stimulator of interferon genes (STING) innate immune pathway to induce the expression of type I IFNs and other cytokines. Pharmacologic activation of STING is considered a potent therapeutic strategy in cancer. In this study, we used a cell-based phenotypic screen and identified podophyllotoxin (podofilox), a microtubule destabilizer, as a robust enhancer of the cGAMP-STING signaling pathway. We found that podofilox enhanced the cGAMP-mediated immune response by increasing STING-containing membrane puncta and the extent of STING oligomerization. Furthermore, podofilox changed the trafficking pattern of STING and delayed trafficking-mediated STING degradation. Importantly, the combination of cGAMP and podofilox had profound antitumor effects on mice by activating the immune response through host STING signaling. Together, these data provide insights into the regulation of cGAMP-STING pathway activation and demonstrate what we believe to be a novel approach for modulating this pathway and thereby promoting antitumor immunity.


Asunto(s)
Neoplasias , Podofilotoxina , Animales , Ratones , Podofilotoxina/farmacología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Inmunidad Innata
13.
Mol Oncol ; 16(4): 1026-1044, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33932085

RESUMEN

Tumor-associated macrophages (TAM) play a crucial role in promoting cancer progression. Upon cytokine stimulation, TAM preferentially polarize to the anti-inflammatory and pro-tumor M2 subtype. The mechanism underlying such preferential polarization remains elusive. Here, we report that macrophage-specific deletion of the SUMO-specific protease Sentrin/SUMO-specific protease 3 promotes macrophage polarization towards M2 in bone marrow-derived macrophage (BMDM) induced by interleukin 4 (IL-4)/IL-13 and in an ex vivo model (murine Py8119 cell line), as well as in a mouse orthotopic tumor model. Notably, Sentrin/SUMO-specific protease 3 (SENP3) loss in macrophages accelerated breast cancer malignancy in ex vivo and in vivo models. Mechanistically, we identified Akt Serine/threonine kinase 1 (Akt1) as the substrate of SENP3 and found that the enhanced Akt1 SUMOylation upon SENP3 loss resulted in Akt1 hyper-phosphorylation and activation, which facilitates M2 polarization. Analysis of clinical data showed that a lower level of SENP3 in TAM has a strong negative correlation with the level of the M2 marker CD206, as well as with a worse clinical outcome. Thus, increased Akt1 SUMOylation as a result of SENP3 deficiency modulates polarization of macrophages to the M2 subtype within a breast cancer microenvironment, which in turn promotes tumor progression.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Femenino , Humanos , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Microambiente Tumoral
14.
Cell Rep ; 39(9): 110880, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649354

RESUMEN

Cyclic 2',3'-GMP-AMP (cGAMP) binds to and activates stimulator of interferon genes (STING), which then induces interferons to drive immune responses against tumors and pathogens. Exogenous cGAMP produced by infected and malignant cells and synthetic cGAMP used in immunotherapy must traverse the cell membrane to activate STING in target cells. However, as an anionic hydrophilic molecule, cGAMP is not inherently membrane permeable. Here, we show that LL-37, a human host defense peptide, can function as a transporter of cGAMP. LL-37 specifically binds cGAMP and efficiently delivers cGAMP into target cells. cGAMP transferred by LL-37 activates robust interferon responses and host antiviral immunity in a STING-dependent manner. Furthermore, we report that LL-37 inducers vitamin D3 and sodium butyrate promote host immunity by enhancing endogenous LL-37 expression and its mediated cGAMP immune response. Collectively, our data uncover an essential role of LL-37 in innate immune activation and suggest new strategies for immunotherapy.


Asunto(s)
Factores de Restricción Antivirales , Catelicidinas , Inmunidad Innata , Interferones , Factores de Restricción Antivirales/inmunología , Catelicidinas/inmunología , Humanos , Interferones/inmunología , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos
15.
Cell Rep ; 41(5): 111581, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323264

RESUMEN

The dynamic regulation of ß-cell abundance is poorly understood. Since chromatin remodeling plays critical roles in liver regeneration, these mechanisms could be generally important for regeneration in other tissues. Here, we show that the ARID1A mammalian SWI/SNF complex subunit is a critical regulator of ß-cell regeneration. Arid1a is highly expressed in quiescent ß-cells but is physiologically suppressed when ß-cells proliferate during pregnancy or after pancreas resection. Whole-body Arid1a knockout mice are protected against streptozotocin-induced diabetes. Cell-type and temporally specific genetic dissection show that ß-cell-specific Arid1a deletion can potentiate ß-cell regeneration in multiple contexts. Transcriptomic and epigenomic profiling of mutant islets reveal increased neuregulin-ERBB-NR4A signaling. Chemical inhibition of ERBB or NR4A1 blocks increased regeneration associated with Arid1a loss. Mammalian SWI/SNF (mSWI/SNF) complex activity is a barrier to ß-cell regeneration in physiologic and disease states.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteínas Nucleares , Ratones , Animales , Embarazo , Femenino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ensamble y Desensamble de Cromatina , Transducción de Señal , Regeneración Hepática , Mamíferos/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
16.
J Biol Chem ; 285(17): 12906-15, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20181954

RESUMEN

Small ubiquitin-like modifier (SUMO) 2/3 is known to conjugate to substrates in response to a variety of cellular stresses. However, whether and how SUMO2/3-specific proteases are involved in de-conjugation under cell stress is unclear. Here, we show that low doses of hydrogen peroxide (H(2)O(2)) induce an increase of the SENP3 protein, which removes SUMO2/3 from promyelocytic leukemia (PML). Low dose H(2)O(2) causes SENP3 to co-localize with PML bodies and reduces the number of PML bodies in a SENP3-dependent manner. Furthermore, de-conjugation of SUMO2/3 from PML is responsible for the accelerated cell proliferation caused by low dose H(2)O(2). Knocking down PML promotes basal cell proliferation as expected. This can be reversed by reconstitution with wild-type PML but not its mutant lacking SUMOylation, indicating that only the SUMOylated PML can play an inhibitory role for cell proliferation. Thus, SENP3 appears to be a key mediator in mild oxidative stress-induced cell proliferation via regulation of the SUMOylation status of PML. Furthermore, SENP3 is over-accumulated in a variety of primary human cancers including colon adenocarcinoma in which PML is hypo-SUMOylated. These results reveal an important role of SENP3 and the SUMOylation status of PML in the regulation of cell proliferation under oxidative stress.


Asunto(s)
Proliferación Celular , Cisteína Endopeptidasas/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Cisteína Endopeptidasas/genética , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Oxidantes/farmacología , Proteína de la Leucemia Promielocítica , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitinas/genética
17.
Cell Death Discov ; 7(1): 89, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934113

RESUMEN

Cholangiocarcinoma (CCA) is a type of solid tumor derived from the bile duct epithelium that features universal gemcitabine resistance. Here, we utilized a gene-encoded ROS biosensor probe (HyPer3 probe) to sort subpopulations with different redox statuses from CCA cells. The isolated HyPer-low subpopulation CCA cells, which exhibited relatively lower cellular ROS levels, exhibited higher chemoresistance to gemcitabine than HyPer-high subpopulation CCA cells in vitro and in vivo. Mechanistically, increased expression of MTHFD1 was found in HyPer-low cells. Knocking down MTHFD1 in HyPer-low cells enhanced cellular ROS and restored sensitivity to gemcitabine. Furthermore, the MTHFD1 inhibitor antifolate compound methotrexate (MTX) increased cellular ROS, and combining gemcitabine with MTX effectively suppressed cholangiocarcinoma cell growth. In summary, the MTHFD1 level mediated the heterogeneous cellular redox status in CCA, which resulted in chemoresistance to gemcitabine. Our data suggest a novel strategy for CCA chemotherapy.

18.
Cell Rep ; 30(6): 1951-1963.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049023

RESUMEN

Bone metabolism depends on the balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases like osteoporosis are characterized by increased bone destruction due to partially enhanced osteoclastogenesis. Here, we report that the post-translational SUMO modification is critical for regulating osteoclastogenesis. The expression of the SUMO-specific protease SENP3 is downregulated in osteoclast precursors during osteoclast differentiation. Mice with SENP3 deficiency in bone marrow-derived monocytes (BMDMs) exhibit more severe bone loss due to over-activation of osteoclasts after ovariectomy. Deleting SENP3 in BMDMs promotes osteoclast differentiation. Mechanistically, loss of SENP3 increases interferon regulatory factor 8 (IRF8) SUMO3 modification at the K310 amino acid site, which upregulates expression of the nuclear factor of activated T cell c1 (NFATc1) and osteoclastogenesis. In summary, IRF8 de-SUMO modification mediated by SENP3 suppresses osteoclast differentiation and suggests strategies to treat bone loss diseases.


Asunto(s)
Médula Ósea/metabolismo , Cisteína Endopeptidasas/metabolismo , Factores Reguladores del Interferón/metabolismo , Monocitos/metabolismo , Osteoclastos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteogénesis , Osteoporosis/metabolismo , Osteoporosis/patología , Transfección , Ubiquitinas/metabolismo
19.
Nat Cancer ; 1(9): 909-922, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-34386776

RESUMEN

SWI/SNF chromatin remodelers play critical roles in development and cancer. The causal links between SWI/SNF complex disassembly and carcinogenesis are obscured by redundancy between paralogous components. Canonical cBAF-specific paralogs ARID1A and ARID1B are synthetic lethal in some contexts, but simultaneous mutations in both ARID1s are prevalent in cancer. To understand if and how cBAF abrogation causes cancer, we examined the physiologic and biochemical consequences of ARID1A/ARID1B loss. In double knockout liver and skin, aggressive carcinogenesis followed de-differentiation and hyperproliferation. In double mutant endometrial cancer, add-back of either induced senescence. Biochemically, residual cBAF subcomplexes resulting from loss of ARID1 scaffolding were unexpectedly found to disrupt polybromo containing pBAF function. 37 of 69 mutations in the conserved scaffolding domains of ARID1 proteins observed in human cancer caused complex disassembly, partially explaining their mutation spectra. ARID1-less, cBAF-less states promote carcinogenesis across tissues, and suggest caution against paralog-directed therapies for ARID1-mutant cancer.


Asunto(s)
Carcinogénesis , Proteínas de Unión al ADN , Neoplasias , Factores de Transcripción , Carcinogénesis/genética , Cromatina , Proteínas de Unión al ADN/genética , Humanos , Mutación , Neoplasias/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA