Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ther ; 32(2): 411-425, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38098229

RESUMEN

Radiotherapy (RT), administered to roughly half of all cancer patients, occupies a crucial role in the landscape of cancer treatment. However, expanding the clinical indications of RT remains challenging. Inspired by the radiation-induced bystander effect (RIBE), we used the mediators of RIBE to mimic RT. Specifically, we discovered that irradiated tumor cell-released microparticles (RT-MPs) mediated the RIBE and had immune activation effects. To further boost the immune activation effect of RT-MPs to achieve cancer remission, even in advanced stages, we engineered RT-MPs with different cytokine and chemokine combinations by modifying their production method. After comparing the therapeutic effect of the engineered RT-MPs in vitro and in vivo, we demonstrated that tIL-15/tCCL19-RT-MPs effectively activated antitumor immune responses, significantly prolonged the survival of mice with malignant pleural effusion (MPE), and even achieved complete cancer remission. When tIL-15/tCCL19-RT-MPs were combined with PD-1 monoclonal antibody (mAb), a cure rate of up to 60% was achieved. This combination therapy relied on the activation of CD8+ T cells and macrophages, resulting in the inhibition of tumor growth and the establishment of immunological memory against tumor cells. Hence, our research may provide an alternative and promising strategy for cancers that are not amenable to conventional RT.


Asunto(s)
Micropartículas Derivadas de Células , Derrame Pleural Maligno , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Terapia Combinada , Citocinas , Microambiente Tumoral , Línea Celular Tumoral
2.
J Nanobiotechnology ; 22(1): 156, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589867

RESUMEN

Immunotherapy has revolutionized the treatment of cancer. However, its efficacy remains to be optimized. There are at least two major challenges in effectively eradicating cancer cells by immunotherapy. Firstly, cancer cells evade immune cell killing by down-regulating cell surface immune sensors. Secondly, immune cell dysfunction impairs their ability to execute anti-cancer functions. Radiotherapy, one of the cornerstones of cancer treatment, has the potential to enhance the immunogenicity of cancer cells and trigger an anti-tumor immune response. Inspired by this, we fabricate biofunctionalized liposome-like nanovesicles (BLNs) by exposing irradiated-cancer cells to ethanol, of which ethanol serves as a surfactant, inducing cancer cells pyroptosis-like cell death and facilitating nanovesicles shedding from cancer cell membrane. These BLNs are meticulously designed to disrupt both of the aforementioned mechanisms. On one hand, BLNs up-regulate the expression of calreticulin, an "eat me" signal on the surface of cancer cells, thus promoting macrophage phagocytosis of cancer cells. Additionally, BLNs are able to reprogram M2-like macrophages into an anti-cancer M1-like phenotype. Using a mouse model of malignant pleural effusion (MPE), an advanced-stage and immunotherapy-resistant cancer model, we demonstrate that BLNs significantly increase T cell infiltration and exhibit an ablative effect against MPE. When combined with PD-1 inhibitor (α-PD-1), we achieve a remarkable 63.6% cure rate (7 out of 11) among mice with MPE, while also inducing immunological memory effects. This work therefore introduces a unique strategy for overcoming immunotherapy resistance.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Neoplasias/radioterapia , Neoplasias/metabolismo , Macrófagos/metabolismo , Inmunoterapia , Etanol/metabolismo , Línea Celular Tumoral
3.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542167

RESUMEN

To investigate the effect of active immunisation with gonadotropin-releasing hormone (GnRH) on the reproductive function in male Sprague Dawley (SD) rats, 24 42-day-old rats were randomly assigned to treatment with GnRH6-MAP, GnRH-OVA, a surgical castration group, and a blank control group. Each rat in the treatment groups was intramuscularly injected at 6, 8, and 10 weeks of age. The serum concentrations of testosterone (T), follicle-stimulating hormone (FSH), luteinising hormone (LH), and anti-GnRH antibodies were determined using enzyme-linked immunosorbent assays. The results showed that active immunisation with recombinant GnRH6-MBP and GnRH-OVA significantly increased the serum levels of anti-GnRH antibodies and reduced the serum concentrations of testosterone compared to the black control. Eight weeks after immunisation, the rats' testes were surgically removed for morphological evaluation, showing atrophy of the convoluted vasculature, relative emptying of the lumen, and insignificant differentiation of spermatogonial cells, which were increased in weight and volume compared with the blank control group. These findings indicated that active immunisation with GnRH can lead to testicular atrophy and reduce gonadal hormone concentrations, suggesting that GnRH is a highly effective immunogen.


Asunto(s)
Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Vacunación , Testosterona , Anticuerpos , Atrofia
4.
Immunol Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630408

RESUMEN

Massive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of ß-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-ß-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.

5.
Cell Biosci ; 14(1): 49, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632627

RESUMEN

Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.

6.
Int J Biol Macromol ; 266(Pt 1): 130815, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537847

RESUMEN

Bacillus thuringiensis (Bt) toxins have provided exceptional control of agricultural insect pests, however, over reliance on the proteins would potentially contribute to the development of field tolerance. Developing new sustainable insect pest control methods that target the mechanisms underlying Bt tolerance can potentially support the Bt control paradigm while also providing insights into basic insect physiology. The MAPK p38 pathway is strongly associated with Bt tolerance in Chilo suppressalis, a major pest of rice. To gain insights into how this pathway impacts tolerance, high-throughput screening of C. suppressalis larval midguts initially identified eight novel target genes. Increased larval sensitivity to the transgenic cry1Ca rice strain T1C-19 was observed following RNA interference-mediated knockdown of four of the genes, Cscnc, Csgcp, Cszfp26 and CsZMYM1. Similar enhanced sensitivity to the TT51 (expressing Cry1Ab/1Ac) and T2A-1 (expressing Cry2Aa) transgenic rice lines occurred when Cszfp26 and CsZMYM1 were knocked down. All four target genes are downstream of the MAPK p38 pathway but do not participate in negative feedback loop of the pathway. These results implicate Cscnc, Csgcp, Cszfp and CsZMYM1 in the C. suppressalis transgenic cry1Ca rice tolerance mechanism regulated by MAPK p38. These findings further enhance our understanding of the MAPK p38-dependent molecular mechanisms underlying Bt tolerance in C. suppressalis and open new avenues of tolerance management to develop.


Asunto(s)
Técnicas de Silenciamiento del Gen , Larva , Oryza , Plantas Modificadas Genéticamente , Proteínas Quinasas p38 Activadas por Mitógenos , Oryza/genética , Oryza/parasitología , Plantas Modificadas Genéticamente/genética , Animales , Larva/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Endotoxinas/genética , Mariposas Nocturnas/genética , Proteínas Hemolisinas/genética
7.
Front Aging Neurosci ; 16: 1384318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832072

RESUMEN

Objective: Investigate the impact of combined computerized cognitive training and occupational therapy on individuals with mild cognitive impairment (MCI). Methods: We randomly assigned 118 MCI patients into two groups: a combined intervention group (n = 37) and a control group (n = 81), the latter receiving standard nursing care. The intervention group additionally underwent 12 weeks of computerized cognitive training and occupational therapy. Blind assessors evaluated cognitive performance, anxiety, depression, and daily living activities before the intervention, post-intervention, and at a 3-month follow-up. Results: Repeated-measures analysis of variance showed that the sMoCA scores, HAMA scores, and ADL scores of the experimental group at T2 (post-intervention) and T3 (3-month follow-up) were higher than those of the control group, and the difference was statistically significant (p < 0.001, p < 0.001, p = 0.026). Conclusion: Computerized cognitive training combined with occupational therapy can improve patients' cognitive status, enhance their compliance with continuing care, and maintain their anxiety and self-care ability at a stable level. Clinical trial registration: https://www.chictr.org.cn/index.html, identifier ChiCTR2200065014.

8.
Theranostics ; 14(3): 1147-1167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323315

RESUMEN

Interest surrounding the effect of irradiation on immune activation has exponentially grown within the last decade. This includes work regarding mechanisms of the abscopal effect and the success achieved by combination of radiotherapy and immunotherapy. It is hypothesized that irradiation triggers the immune system to eliminate tumors by inducing tumor cells immunogenic cell death (ICD) in tumor cells. Activation of the ICD pathways can be exploited as an in situ vaccine. In this review, we provide fundamental knowledge of various forms of ICD caused by irradiation, describe the relationship between various cell death pathways and the immune activation effect driven by irradiation, and focus on the therapeutic value of exploiting these cell death programs in the context of irradiation. Furthermore, we summarize the immunomodulatory effect of different cell death programs on combinative radiotherapy and immunotherapy. In brief, differences in cell death programs significantly impact the irradiation-induced immune activation effect. Evaluating the transition between them will provide clues to develop new strategies for radiotherapy and its combination with immunotherapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Muerte Celular , Inmunoterapia , Sistema Inmunológico , Vacunación
9.
Int J Biol Macromol ; 260(Pt 2): 129341, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218272

RESUMEN

Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1ß stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1ß stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Resinas Epoxi , Hiperglucemia , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Endotelio Vascular , Vinculina , Diabetes Mellitus Experimental/metabolismo , Adhesiones Focales , Proteínas Proto-Oncogénicas c-fos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glucosa/metabolismo
10.
Cell Rep ; 43(7): 114425, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38970789

RESUMEN

Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Obesidad , Animales , Obesidad/metabolismo , Obesidad/terapia , Ratones , Proteína Desacopladora 1/metabolismo , Ingeniería de Tejidos/métodos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Humanos , Peso Corporal , Ratones Obesos
11.
J Hazard Mater ; 477: 135377, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088960

RESUMEN

The excessive accumulation of Cd and Zn in soil poisons crops and threatens food safety. In this study, KMnO4-hematite modified biochar (MnFeB) was developed and applied to remediate weakly alkaline Cd-Zn contaminated soil, and the heavy metal immobilization effect, plant growth, and metal ion uptake of foxtail millet were studied. MnFeB application reduced the phytotoxicity of soil heavy metals; bioavailable acid-soluble Cd and Zn were reduced by 57.79% and 35.64%, respectively, whereas stable, non-bioavailable, residual Cd and Zn increased by 96.44% and 32.08%, respectively. The chlorophyll and total protein contents and the superoxide dismutase (SOD)activity were enhanced, whereas proline, malondialdehyde, the H2O2 content, glutathione reductase (GR), ascorbate peroxidase (APX) and catalase (CAT) activities were reduced. Accordingly, the expressions of GR, APX, and CAT were downregulated, whereas the expression of MnSOD was upregulated. In addition, MnFeB promoted the net photosynthetic rate and growth of foxtail millet plants. Furthermore, MnFeB reduced the levels of Cd and Zn in the stems, leaves, and grains, decreased the bioconcentration factor of Cd and Zn in shoots, and weakened the translocation of Cd and Zn from roots to shoots. Precipitation, complexation, oxidation-reduction, ion exchange, and π-π stacking interaction were the main Cd and Zn immobilization mechanisms, and MnFeB reduced the soil bacterial community diversity and the relative abundance of Proteobacteria and Planctomycetota. This study provides a feasible and effective remediation material for Cd- and Zn-contaminated soils.


Asunto(s)
Cadmio , Carbón Orgánico , Compuestos Férricos , Setaria (Planta) , Contaminantes del Suelo , Zinc , Carbón Orgánico/química , Cadmio/toxicidad , Cadmio/química , Zinc/química , Zinc/toxicidad , Contaminantes del Suelo/toxicidad , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/crecimiento & desarrollo , Setaria (Planta)/metabolismo , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Fotosíntesis/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Clorofila/metabolismo
12.
Res Sq ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260587

RESUMEN

As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Herein we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA span from the inner leaflet to the outer leaflet of the membrane. BRD-8000.3 occupies one lipid site at the level of inner membrane leaflet, competitively inhibiting lipid binding. EfpA resembles the related lysophospholipid transporter MFSD2A in both overall structure and lipid binding sites, and may function as a lipid flippase. Combining AlphaFold-predicted EfpA structure, which is inward-open, we propose a complete conformational transition cycle for EfpA. Together, our results provide a structural and mechanistic foundation to comprehend EfpA function and develop EfpA-targeting anti-TB drugs.

13.
Cancer Lett ; 592: 216898, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38670306

RESUMEN

Radiotherapy (RT) is used for over 50 % of cancer patients and can promote adaptive immunity against tumour antigens. However, the underlying mechanisms remain unclear. Here, we discovered that RT induces the release of irradiated tumour cell-derived microparticles (RT-MPs), which significantly upregulate MHC-I expression on the membranes of non-irradiated cells, enhancing the recognition and killing of these cells by T cells. Mechanistically, RT-MPs induce DNA double-strand breaks (DSB) in tumour cells, activating the ATM/ATR/CHK1-mediated DNA repair signalling pathway, and upregulating MHC-I expression. Inhibition of ATM/ATR/CHK1 reversed RT-MP-induced upregulation of MHC-I. Furthermore, phosphorylation of STAT1/3 following the activation of ATM/ATR/CHK1 is indispensable for the DSB-dependent upregulation of MHC-I. Therefore, our findings reveal the role of RT-MP-induced DSBs and the subsequent DNA repair signalling pathway in MHC-I expression and provide mechanistic insights into the regulation of MHC-I expression after DSBs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Micropartículas Derivadas de Células , Roturas del ADN de Doble Cadena , Reparación del ADN , Antígenos de Histocompatibilidad Clase I , Transducción de Señal , Regulación hacia Arriba , Humanos , Micropartículas Derivadas de Células/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Animales , Fosforilación , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Ratones , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/radioterapia , Neoplasias/inmunología
14.
Research (Wash D C) ; 7: 0450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165639

RESUMEN

Radiotherapy (RT) serves as the primary treatment for solid tumors. Its potential to incite an immune response against tumors both locally and distally profoundly impacts clinical outcomes. However, RT may also promote the accumulation of immunosuppressive cytokines and immunosuppressive cells, greatly impeding the activation of antitumor immune responses and substantially limiting the effectiveness of RT. Therefore, regulating post-RT immunosuppression to steer the immune milieu toward heightened activation potentially enhances RT's therapeutic potential. Cytokines, potent orchestrators of diverse cellular responses, play a pivotal role in regulating this immunosuppressive response. Identifying and promptly neutralizing early released immunosuppressive cytokines are a crucial development in augmenting RT's immunomodulatory effects. To this end, we conducted a screen of immunosuppressive cytokines following RT and identified macrophage colony-stimulating factor (MCSF) as an early up-regulated and persistent immune suppressor. Single-cell sequencing revealed that the main source of up-regulated MCSF derived from tumor cells. Mechanistic exploration revealed that irradiation-dependent phosphorylation of the p65 protein facilitated its binding to the MCSF gene promoter, enhancing transcription. Knockdown and chemical inhibitor experiments conclusively demonstrated that suppressing tumor cell-derived MCSF amplifies RT's immune-activating effects, with optimal results achieved by early MCSF blockade after irradiation. Additionally, we validated that MCSF acted on macrophages, inducing the secretion of a large number of inhibitory cytokines. In summary, we propose a novel approach to enhance the immune activation effects of RT by blocking the MCSF-CSF1R signaling pathway early after irradiation.

15.
Theranostics ; 14(3): 1224-1240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323313

RESUMEN

Background: The role of senescent cells in the tumor microenvironment (TME) is usually bilateral, and diverse therapeutic approaches, such as radiotherapy and chemotherapy, can induce cellular senescence. Cellular interactions are widespread in the TME, and tumor cells reprogram immune cells metabolically by producing metabolites. However, how senescent cells remodel the metabolism of TME remains unclear. This study aimed to explore precise targets to enhance senescent cells-induced anti-tumor immunity from a metabolic perspective. Methods: The in vivo senescence model was induced by 8 Gy×3 radiotherapy or cisplatin chemotherapy, and the in vitro model was induced by 10 Gy-irradiation or cisplatin treatment. Metabonomic analysis and ELISA assay on tumor interstitial fluid were performed for metabolites screening. Marker expression and immune cell infiltration in the TME were analyzed by flow cytometry. Cell co-culture system and senescence-conditioned medium were used for crosstalk validation in vitro. RNA sequencing and rescue experiments were conducted for mechanism excavation. Immunofluorescence staining and single-cell transcriptome profiling analysis were performed for clinical validation. Results: We innovatively reveal the metabolic landscape of the senescent TME, characterized with the elevation of adenosine. It is attributed to the senescent tumor cell-induced CD73 upregulation of tumor-associated macrophages (TAMs). CD73 expression in TAMs is evoked by SASP-related pro-inflammatory cytokines, especially IL-6, and regulated by JAK/STAT3 pathway. Consistently, a positive correlation between tumor cells senescence and TAMs CD73 expression is identified in lung cancer clinical specimens and databases. Lastly, blocking CD73 in a senescent background suppresses tumors and activates CD8+ T cell-mediated antitumor immunity. Conclusions: TAMs expressed CD73 contributes significantly to the adenosine accumulation in the senescent TME, suggesting targeting CD73 is a novel synergistic anti-tumor strategy in the aging microenvironment.


Asunto(s)
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Cisplatino , Macrófagos/metabolismo , Senescencia Celular , Neoplasias Pulmonares/patología , Adenosina/metabolismo
16.
Nat Commun ; 15(1): 6676, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107288

RESUMEN

53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Neoplasias Ováricas , Neoplasias Pancreáticas , Proteína 1 de Unión al Supresor Tumoral P53 , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Femenino , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Animales , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ratones , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Transducción de Señal , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Ratones Endogámicos C57BL , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones Noqueados , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Inmunidad Innata
17.
J Exp Clin Cancer Res ; 43(1): 28, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254206

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Peptidasa Específica de Ubiquitina 7 , beta Carioferinas , Humanos , Apoptosis , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
18.
Cell Death Differ ; 31(3): 309-321, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38287116

RESUMEN

Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.


Asunto(s)
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteínas Nucleares , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Proteínas Represoras , Peptidasa Específica de Ubiquitina 7/genética
19.
J Exp Clin Cancer Res ; 43(1): 34, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281999

RESUMEN

BACKGROUND: The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS: Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3ß on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS: We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3ß kinase to recognize and degrade IGF2BP2. CONCLUSIONS: Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Transportador de Aminoácidos Neutros Grandes 1 , Neoplasias Pulmonares , Proteínas de Unión al ARN , Animales , Ratones , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , ARN , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Unión al ARN/genética , Tolerancia a Radiación
20.
Math Biosci Eng ; 20(12): 20437-20467, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38124560

RESUMEN

In this paper, we work on the discrete modified Leslie type predator-prey model with Holling type II functional response. The existence and local stability of the fixed points of this system are studied. According to bifurcation theory and normal forms, we investigate the codimension 1 and 2 bifurcations of positive fixed points, including the fold, 1:1 strong resonance, fold-flip and 1:2 strong resonance bifurcations. In particular, the discussion of discrete codimension 2 bifurcation is rare and difficult. Our work can be seen as an attempt to complement existing research on this topic. In addition, numerical analysis is used to demonstrate the correctness of the theoretical results. Our analysis of this discrete system revealed quite different dynamical behaviors than the continuous one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA