Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1435-1446, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37997699

RESUMEN

Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.


Asunto(s)
Fotosíntesis , Respiración , Temperatura , Oscuridad , Estaciones del Año , Hojas de la Planta
2.
Plant Physiol ; 191(4): 2204-2217, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517877

RESUMEN

Evaluating leaf day respiration rate (RL), which is believed to differ from that in the dark (RDk), is essential for predicting global carbon cycles under climate change. Several studies have suggested that atmospheric CO2 impacts RL. However, the magnitude of such an impact and associated mechanisms remain uncertain. To explore the CO2 effect on RL, wheat (Triticum aestivum) and sunflower (Helianthus annuus) plants were grown under ambient (410 ppm) and elevated (820 ppm) CO2 mole fraction ([CO2]). RL was estimated from combined gas exchange and chlorophyll fluorescence measurements using the Kok method, the Kok-Phi method, and a revised Kok method (Kok-Cc method). We found that elevated growth [CO2] led to an 8.4% reduction in RL and a 16.2% reduction in RDk in both species, in parallel to decreased leaf N and chlorophyll contents at elevated growth [CO2]. We also looked at short-term CO2 effects during gas exchange experiments. Increased RL or RL/RDk at elevated measurement [CO2] were found using the Kok and Kok-Phi methods, but not with the Kok-Cc method. This discrepancy was attributed to the unaccounted changes in Cc in the former methods. We found that the Kok and Kok-Phi methods underestimate RL and overestimate the inhibition of respiration under low irradiance conditions of the Kok curve, and the inhibition of RL was only 6%, representing 26% of the apparent Kok effect. We found no significant long-term CO2 effect on RL/RDk, originating from a concurrent reduction in RL and RDk at elevated growth [CO2], and likely mediated by acclimation of nitrogen metabolism.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Respiración
3.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39031544

RESUMEN

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Asunto(s)
Dióxido de Carbono , Helianthus , Células del Mesófilo , Estomas de Plantas , Triticum , Dióxido de Carbono/metabolismo , Estomas de Plantas/fisiología , Células del Mesófilo/fisiología , Células del Mesófilo/metabolismo , Triticum/fisiología , Triticum/metabolismo , Helianthus/fisiología , Helianthus/metabolismo , Isótopos de Carbono , Fotosíntesis/fisiología , Fabaceae/fisiología , Clorofila/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA