Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 309: 114700, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35180436

RESUMEN

Low Impact Development (LID) is an effective measure in controlling the urban runoff and mitigating the non-point source pollution. The determination of LID facilities and layouts for a sub-catchment is important for designing stormwater management system. However, there are remain large uncertainty and challenge exist in determination of LID facilities when consider budget, land use, soil surface and groundwater as well as local climate etc. To address this issue, this study employed Genetic Algorithm (GA) for optimization of the selection and layout of LID. The urban runoff was simulated using Environmental Protection Agency (EPA) Storm Water Management Model (SWMM). The LID planning was encoded as 0 and 1 in GA algorithm. The multiple objectives which include runoff reduction, area of LID and life cycle cost were selected as optimization targets. To test the model performance, the Airport Economic Zone in Tianjin, China was chosen as the study area. The results demonstrate that the combination of LID approaches are most effective measures on runoff reduction through long-term simulation (10 years' rainfall events). The impact of different weights of land area and cost on LID selection were evaluated when considering life cycle cost. Bio-Retention is preferred when considering the area of LID and Green Roof is recommended when the cost is prioritized. The present research proved GA is feasible for LID planning in urban area. The proposed method can help the decision-makers to determine the LID plan more scientific based on SWMM model and GA.


Asunto(s)
Agua Subterránea , Movimientos del Agua , Algoritmos , Animales , China , Estadios del Ciclo de Vida , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA