RESUMEN
Lithium sulfide (Li2S) is a highly desired material for advanced batteries. However, its current industrial production is not suitable for large-scale applications in the long run because the process is carbon-emissive, energy-intensive, and cost-ineffective. This article demonstrates a new method that can overcome these challenges by reacting lithium sulfate (Li2SO4) with sodium sulfide. This approach, which seems unfeasible initially because Li2SO4 is barely soluble in ethanol at room temperature, becomes feasible when heated ethanol and an excess amount of Li2SO4 are used. More interestingly, product purification is easier than that in other metathetic reactions, thanks to the poor solubility of Li2SO4. In order to further minimize the overall costs of producing Li2S, the concomitant byproduct LiNaSO4 and the unfinished precursor Li2SO4 are converted into more valuable materials, Li2CO3 and Na2SO4. Moreover, the homemade Li2S is competitive with the commercial Li2S in cathode performance and gains further enhancement when being composited with the Co9S8 catalyst. Thus, this Li2SO4-based metathesis of Li2S has great potential for practical applications.
RESUMEN
Dezhou donkey is one of the representative local breeds in China, which is mainly divided into two strains: Sanfen and Wutou. There are obvious differences in coat color between the two strains. The former shows light points around the eyes, around the muzzle and under the belly, while the latter is completely solid black. In this study, genome-wide association analysis was performed for the differences in coat color traits between the Sanfen (n = 97) and Wutou (n = 108) strains using a novel donkey 40K liquid chip developed based on GenoBaits technology, to identify genomic regions and causal genes that could explain this variation. We also used FST and The cross-population composite likelihood ratio test (XPCLR) analyses to explore selected regions related to coat color differences. We identified one significant region on chromosome 15, with the most significant SNP located within the agouti signaling protein (ASIP) gene. At the same time, both FST and XPCLR methods detected the same selected region on chromosome 15, and ASIP was the gene with the strongest signal. ASIP and melanocortin 1 receptor (MC1R) control the ratio of eumelanin to pheomelanin through their protein activity. They are deeply involved in the process of melanosome organation and melanogenesis, thus affecting mammals' coat color variation. We used a range of genome-wide approach to identify the genetic basis of coat color variation in Dezhou donkeys. The results provide a supplement to the color variation study in Chinese donkeys at the genome-wide level, and preliminarily verified the reliability of the Molbreeding Donkey No. 1 40K liquid chip.
Asunto(s)
Equidae , Estudio de Asociación del Genoma Completo , Animales , Equidae/genética , Reproducibilidad de los Resultados , Radioisótopos de PotasioRESUMEN
BACKGROUND: Gut microbiota plays a significant role in host survival, health, and diseases; however, compared to other livestock, research on the gut microbiome of donkeys is limited. RESULTS: In this study, a total of 30 donkey samples of rectal contents from six regions, including Shigatse, Changdu, Yunnan, Xinjiang, Qinghai, and Dezhou, were collected for metagenomic sequencing. The results of the species annotation revealed that the dominant phyla were Firmicutes and Bacteroidetes, and the dominant genera were Bacteroides, unclassified_o_Clostridiales (short for Clostridiales) and unclassified_f_Lachnospiraceae (short for Lachnospiraceae). The dominant phyla, genera and key discriminators were Bacteroidetes, Clostridiales and Bacteroidetes in Tibet donkeys (Shigatse); Firmicutes, Clostridiales and Clostridiales in Tibet donkeys (Changdu); Firmicutes, Fibrobacter and Tenericutes in Qinghai donkeys; Firmicutes, Clostridiales and Negativicutes in Yunnan donkeys; Firmicutes, Fibrobacter and Fibrobacteres in Xinjiang donkeys; Firmicutes, Clostridiales and Firmicutes in Dezhou donkeys. In the functional annotation, it was mainly enriched in the glycolysis and gluconeogenesis of carbohydrate metabolism, and the abundance was the highest in Dezhou donkeys. These results combined with altitude correlation analysis demonstrated that donkeys in the Dezhou region exhibited strong glucose-conversion ability, those in the Shigatse region exhibited strong glucose metabolism and utilization ability, those in the Changdu region exhibited a strong microbial metabolic function, and those in the Xinjiang region exhibited the strongest ability to decompose cellulose and hemicellulose. CONCLUSION: According to published literature, this is the first study to construct a dataset with multi-regional donkey breeds. Our study revealed the differences in the composition and function of gut microbes in donkeys from different geographic regions and environmental settings and is valuable for donkey gut microbiome research.
Asunto(s)
Equidae , Microbioma Gastrointestinal , Bacteroidetes , China , Clostridiales , Firmicutes , Equidae/microbiologíaRESUMEN
Lithium sulfide (Li2S) is a critical material for clean energy technologies, i.e., the cathode material in lithium-sulfur batteries and the raw material for making sulfide solid electrolytes in all-solid-state batteries. However, its practical application at a large scale is hindered by its industrial production method of reducing lithium sulfate with carbon materials at high temperatures, which emits carbon dioxide and is time-consuming. We hereby report a method of synthesizing Li2S by thermally reducing lithium sulfate with aluminum. Compared with the carbothermal method, this aluminothermal approach has several advantages, such as operation at lower temperatures, completion in minutes, no emission of greenhouse gases, and valuable byproducts of aluminum oxide (Al2O3). The home-made Li2S demonstrates competitive performance in battery tests versus the commercial counterpart. Moreover, using the byproduct Al2O3 to coat the cathode side of the separator can enhance the battery's capacity without influencing its rate capability. Thus, this "one stone two birds" method has great potential for practical applications of developing Li-S batteries.
RESUMEN
This paper represents the fundamental report of the survey of genome-wide changes of four Chinese indigenous donkey breeds, Dezhou (DZ), Guangling (GL), North China (NC), and Shandong Little donkey (SDL), and the findings will prove usefully for identification of biomarkers that perhaps predict or characterize the growth and coat color patterns. Three genomic regions in CYP3A12, TUBGCP5, and GSTA1 genes, were identified as putative selective sweeps in all researched donkey populations. The loci of candidate genes that may have contributed to the phenotypes in body size (ACSL4, MSI2, ADRA1B, and CDKL5) and coat color patterns (KITLG and TBX3) in donkey populations would be found in underlying strong selection signatures when compared between large and small donkey types, and between different coat colors. The results of the phylogenetic analysis, FST, and principal component analysis (PCA) supported that each population cannot clearly deviate from each other, showing no obvious population structure. We can conclude from the population history that the formation processes between DZS and NC, GL, and SDL are completely different. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Chinese donkey breeding programs.
Asunto(s)
Equidae , Polimorfismo de Nucleótido Simple , Animales , Equidae/genética , Genoma , Filogenia , Polimorfismo de Nucleótido Simple/genética , Proteínas de Unión al ARN/genética , ChinaRESUMEN
To date, the origins, domestication, and genetic structure of Chinese Mongolian horses (CMH) are poorly understood. Furthermore, there have been sparse reports on the genetic differences between CMH and Thoroughbred. In order to determine their genetic structure, understand their genetic relationships, and explore their domestication processes, we performed an extensive survey of creatine kinase (muscle isoenzyme; CKM) variations among six populations of indigenous CMH, cultivated Sanhe horses, and imported Thoroughbred. Twenty-three single-nucleotide polymorphisms were found among the 343 horse sequences. From these, 40 haplotypes were inferred. Haplotype diversity (H) values differed from 0.6424 to 0.7881 and nucleotide diversity (π) values ranged from 0.00150 to 0.00211. The differences between Thoroughbred population and other Chinese horse populations were large, but only small differences were observed among Chinese horse populations with respect to CKM intron sequences suggesting that the domestication history, breeding measures, and origins of these horse populations are completely different. Results suggest that Sanhe and CMH are very closely related and the introgression (interbreeding) between them is serious. Our results suggest that Sanhe and Wushen require prompt and powerful protection. Overall, CKM intron was an appropriate marker for the determination of genetic relationships among horse populations and breeds.
Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Caballos/genética , Animales , Intrones/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , HaplotiposRESUMEN
The aim of the present study was to analyze the main factors that have a significant impact on skin thickness, and to further identify the genes and signaling pathways regulating skin growth by RNA-seq in Dezhou donkeys. Skin samples from different body regions of 15 slaughtered donkeys were obtained to study variations in skin thickness over the bodies. Skin thickness data for another 514 donkeys was obtained by minimally invasive skin sampling from the back, and measurements of the donkeys' body size traits and pedigree data were also collected. These data were used to analyze changes in skin thickness and estimate genetic parameters. In addition, transcriptomic analysis was conducted on the skin tissues of individuals from two groups with significant differences in skin thickness. Our results showed that skin thickness over the bodies ranged from 1.08 to 4.36 mm. The skin from the back was the thickest and had the highest correlation with that of other regions of the body. The skin thickness decreased from the back to the side of the ventral abdomen, and the skin thickness on the limbs increased from the proximal end to the distal end. The results also showed that the skin from the same body regions of jacks was thicker than that of jennies in the same age group. The skin thickness of jennies increased from birth to the age of 2 and then clearly decreased after 2 years of age. The estimated heritability of skin thickness was 0.15, and the genetic correlations between skin thickness and body size traits were negligible. Transcriptome analysis showed that the thick-skin group had 65 up-regulated genes and 38 down-regulated genes compared with the thin-skin group. The differentially expressed genes were highly enriched in epidermal development and cell adhesion molecule signaling pathways. We identified the candidate genes responsible for variations in skin thickness in the Dezhou donkey, including KRT10, KRT1, CLDN9, MHCII and MMP28. These results contribute to a better understanding of the growth and development of donkey skin, reveal the molecular mechanism responsible for donkey skin thickness and suggest directions for genetic selection in the Dezhou donkey population.
Asunto(s)
Equidae , Animales , Tamaño Corporal/genética , Equidae/genética , Femenino , Fenotipo , RNA-SeqRESUMEN
Mongolian horses have been bred and used for labor and transport for centuries. Nevertheless, traits of testicular development in Mongolian horses have rarely been studied; particularly, studies regarding the transcriptional regulation characteristics of testicular development are lacking. In this paper, transcription specificity during testicular development in Mongolian horses is highlighted via a multispecies comparative analysis and weighted gene co-expression network analysis (WGCNA). Interestingly, the results showed that most genes were up-regulated in the testes after sexual maturity, which is a phenomenon conserved across species. Moreover, we observed nine key genes involved in regulating Mongolian horse testicular development. Notably, unique transcription signatures of testicular development in Mongolian horses are emphasized, which provides a novel insight into the mechanistic study of their testicular development.
Asunto(s)
Testículo , Masculino , Animales , Caballos/genética , FenotipoRESUMEN
Donkey meat is characterized by a high content of proteins, essential amino acids, and unsaturated fatty acids and is low in fat, cholesterol, and calories. Thus, it is considered a high-quality source of meat. Based on the data from PubMed and Web of science within past 10 years, this review summarizes the factors affecting the quality of donkey meat and its nutritional value, including breed, genetics, gender, age, muscle type, feeding regimen, storage and processing conditions. Breed, gender, age, and feeding regimen mainly affect the quality of donkey meat by influencing its intramuscular fat content and carcass quality. Meanwhile, the tenderness and flavor of donkey meat depend on the muscle type, storage and processing conditions. Genetics, on the other hand, fundamentally affect donkey meat quality by influencing the polymorphism of genes. These findings provide valuable insights and guidance for producers, consumers, and decision-makers in the donkey meat industry, promoting the development of more effective marketing strategies and the improvement of meat quality, thereby enabling the expansion and progress of the entire industry.
RESUMEN
Li6PS5Cl (LPSC) is a very attractive sulfide solid electrolyte for developing high-performance all-solid-state lithium batteries. However, it cannot suppress the growth of lithium dendrites and then can only tolerate a small critical current density (CCD) before getting short-circuited to death. Learning from that a newly-developed LaCl3-based electrolyte (LTLC) can afford a very large CCD, a three-layer sandwich-structured electrolyte is designed by inserting LTLC inside LPSC. Remarkably, compared with bland LPSC, this hybrid electrolyte LPSC/LTLC/LPSC presents extraordinary performance improvements: the CCD gets increased from 0.51 to 1.52 mA cm-2, the lifetime gets prolonged from 7 h to >500 h at the cycling current of 0.5 mA cm-2 in symmetric cells, and the cyclability gets extended from 10 cycles to >200 cycles at the cycling rate of 0.5 C and 30 °C in Li|electrolyte|NCM721 full cells. The enhancing reasons are assigned to the capability of LTLC to scavenge lithium dendrites, forming a passive layer of Ta, La, and LiCl.
RESUMEN
We report a "solo-solvent de novo liquid-phase" method of synthesizing a highly-favored sulfide electrolyte (Li6PS5Cl) for developing all-solid-state lithium batteries. The key chemistry for such a successful method is that tetrahydropyrrole enables in situ synthesis of the critical precursor Li2S from cheap and air-stable precursors of lithium chloride and sodium sulfide.
RESUMEN
As a critical material for emerging lithium-sulfur batteries and sulfide-electrolyte-based all-solid-state batteries, lithium sulfide (Li2S) has great application prospects in the field of energy storage and conversion. However, commercial Li2S is expensive and is produced via a carbon-emissive and time-consuming method of reducing lithium sulfate with carbon materials at high temperatures. Herein we report a novel method of synthesizing Li2S by thermally reducing lithium sulfate with the first non-carbon-based reductant Mg. Compared with the commercial carbothermal method, our magnesothermal technique has multiple advantages, such as completion in minutes, operation at lower temperatures, emission of zero amount of greenhouse-gases, and a valuable byproduct MgO. Moreover, the prepared Li2S product demonstrates excellent cathode performance in lithium-sulfur batteries, in terms of cycling stability, activation voltage, and rate capability. Thus, this innovative method opens a new direction for the research of Li2S and has great potential for practical applications.
RESUMEN
Deoxynivalenol (DON) and zearalenone (ZEA), which are commonly found in feed products, exhibit serious negative effects on the reproductive systems of domestic animals. However, the toxicity of mycotoxins on the uterine function of donkey (Equus asinus) remains unclear. This study investigated the biological effects of DON and ZEA exposure on donkey endometrial epithelial cells (EECs). It was administered 10 µM and 30 µM DON and ZEA to cells cultured in vitro. The results showed that 10 µM DON exposure markedly changed the expression levels of pyroptosis-associated genes and that 30 µM ZEA exposure changed the expression levels of inflammation-associated genes in EECs. The mRNA expression of cancer-promoting genes was markedly upregulated in cells exposed to DON and 30 µM ZEA; in particular, 10 µM and 30 µM DON and ZEA markedly disturbed the expression of androgen and estrogen secretion-related genes. Furthermore, Q-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed EECs. Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of EECs from donkey in vitro.
Asunto(s)
Micotoxinas , Zearalenona , Animales , Células Epiteliales , Equidae , Tricotecenos , Zearalenona/toxicidadRESUMEN
The donkey is an important domestic animal, however the number of donkeys world-wide is currently declining. It is therefore important to protect their genetic resources and to elaborate the regulatory mechanisms of donkey reproduction, particularly, oocyte development. Here, we adopted comparative transcriptomic analysis and weighted gene co-expression network analysis (WGCNA) to uncover the uniqueness of donkey oocyte development compared to cattle, sheep, pigs, and mice, during the period from germinal vesicle (GV) to metaphase II (MII). Significantly, we selected 36 hub genes related to donkey oocyte development, including wee1-like protein kinase 2 (WEE2). Gene Ontology (GO) analysis suggested that these genes are involved in the negative regulation of cell development. Interestingly, we found that donkey specific differentially expressed genes (DEGs) were involved in RNA metabolism and apoptosis. Moreover, the results of WGCNA showed species-specific gene expression patterns. We conclude that, compared to other species, donkey oocytes express a large number of genes related to RNA metabolism to maintain normal oocyte development during the period from GV to MII.
RESUMEN
Twinning trait in donkeys is an important manifestation of high fecundity, but few reports are available elucidating its genetic mechanism. To explore the genetic mechanism underlying the twin colt trait in Dezhou donkeys, DNA from 21 female Dezhou donkeys that had birthed single or twin colts were collected for whole-genome resequencing. FST, θπ and Tajima's D were used to detect the selective sweeps between single and twin colt fecundity in the Dezhou donkey groups. Another set of 20 female Dezhou donkeys with single or multiple follicles during estrus were selected to compare concentrations of reproductive hormone including follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and progesterone (P4). Four candidate genes including ENO2, PTPN11, SOD2 and CD44 were identified in the present study. The CD44 gene had the highest FST value, and ENO2, PTPN11 and SOD2 were screened by two joint analyses (FST and θπ, θπ and Tajima's D). There was no significant difference in the LH, FSH and P4 levels between the two groups (p > 0.05); however, the serum E2 content in the multi-follicle group was significantly higher than that in the single-follicle group (p < 0.05). The identified candidate genes may provide new insights into the genetic mechanism of donkey prolificacy and may be useful targets for further research on high reproductive efficiency.
Asunto(s)
Equidae , Progesterona , Caballos , Masculino , Animales , Femenino , Equidae/genética , Hormona Luteinizante , Hormona Folículo Estimulante/genética , Estradiol , GenómicaRESUMEN
Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of transcriptomic data of testicular and epididymis tissues in donkeys were performed. In the result, there were 4313 differentially expressed genes (DEGs) in the two tissues, including 2047 enriched in testicular tissue and 2266 in epididymis tissue. WGCNA identified 1081 hub genes associated with testis development and 6110 genes with epididymal development. Next, the tissue-specific genes were identified with the above two methods, and the gene ontology (GO) analysis revealed that the epididymal-specific genes were associated with gonad development. On the other hand, the testis-specific genes were involved in the formation of sperm flagella, meiosis period, ciliary assembly, ciliary movement, etc. In addition, we found that eca-Mir-711 and eca-Mir-143 likely participated in regulating the development of epididymal tissue. Meanwhile, eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b potentially played an important role in regulating the development of testicular tissue. In short, these results will contribute to functional studies of the male reproductive trait in donkeys.
Asunto(s)
Epidídimo , Testículo , Animales , Masculino , Testículo/metabolismo , Epidídimo/metabolismo , Equidae/genética , Semen , Perfilación de la Expresión GénicaRESUMEN
Correction for 'Chestnut polysaccharides restore impaired spermatogenesis by adjusting gut microbiota and the intestinal structure' by Zhong-Yi Sun et al., Food Funct., 2022, 13, 425-436, DOI: 10.1039/D1FO03145G.
RESUMEN
Our previous study confirmed the beneficial effects of chestnut polysaccharides (CPs) on the spermatogenesis process, but the exact mechanism is not clear. Several studies have demonstrated the importance of balanced gut microbiota in maintaining normal reproductive function. In this study, we investigated the biological functions of CPs from the perspective of gut microbiota function, expecting to find out the specific mechanism of CPs in restoring impaired spermatogenesis. Compared with the control group, the mice treated with busulfan showed a reduced number of germ cells, structural changes in the small intestine and composition alteration in the gut microbiota at several levels, including the phylum and genus. In contrast, the number of germ cells in seminiferous tubules was significantly increased, and the structure of the small intestine and the composition of the gut microbiota were altered in the busulfan-treated mice after the CPs treatment. The 16s rRNA analysis results showed that the Firmicutes was the predominant phylum in all groups followed by Proteobacteria, Bacteroidetes, Actinobacteria, Tenericutes, Cyanobacteria and unidentified bacteria. Interestingly, the subsequent functional analysis implied that the steroid hormone biosynthesis process is the major metabolic pathway in the CPs-mediated restoration process and the experimental results confirmed this speculation. In conclusion, this study confirmed that CPs can restore the impaired spermatogenesis process by adjusting the gut microbiota and intestinal structure, which will also provide technical support and a theoretical basis for the subsequent treatment of male infertility.
Asunto(s)
Aesculus/química , Microbioma Gastrointestinal/efectos de los fármacos , Nueces/química , Polisacáridos/farmacología , Espermatogénesis/efectos de los fármacos , Animales , Infertilidad Masculina/metabolismo , Intestinos/efectos de los fármacos , Masculino , RatonesRESUMEN
Donkeys' gut microbe is critical for their health and adaptation to the environment. Little research has been conducted on the donkey gut microbiome compared with other domestic animals. The Tibetan Plateau is an extreme environment. In this study, 6 Qinghai donkeys (QH) from the Tibetan Plateau and 6 Dezhou donkeys (DZ) were investigated, and the contents of 4 parts-stomach, small intestine, cecum, and rectum-were collected. 16S rRNA sequencing and metagenomic sequencing were used to analyze the composition and diversity of gut microbial communities in donkeys. The results showed that the flora diversity and richness of the hindgut were significantly higher than those of the foregut (p < 0.01), with no sex differences, and the community structure and composition of the same or adjacent regions (stomach, small intestine, cecum, and rectum) were similar. Besides, the flora diversity and richness of QH on the Tibetan Plateau were significantly higher than those of DZ (p < 0.05). The major pathways associated with QH were signal transduction mechanisms and carbohydrate transport and metabolism, and Bacteroidales were the major contributors to these functions. Our study provides novel insights into the contribution of microbiomes to the adaptive evolution of donkeys.
RESUMEN
Zearalenone (ZEN) is a secondary metabolite, which is mainly produced by Fusarium fungi and exists in various feeds and agricultural products. Recently, an increasing amount of data has shown that ZEN, as an estrogen-like hormone, can have harmful effects on the female reproductive system, especially on oogenesis and folliculogenesis. Breast milk is considered to be the ideal form of nutrition for infants; however, there are some records of contaminants in food, such as mycotoxins, which may be transferred from maternal blood to milk. In this study, we investigated the toxic effects of breast milk on folliculogenesis in offspring following maternal ZEN exposure. Our results showed that maternal ZEN exposure significantly inhibited the process of primordial follicle (PF) assembly and reduced the number of PFs in suckled offspring's ovaries. In addition, RNA-seq analysis showed that RIG-I-like receptor (RLRs) signaling pathways were activated after exposed to ZEN, which increased the expression levels of DNA damage (γ-H2AX, RAD51, and PARP1) and apoptosis related protein (BAX/BCL2 and Caspase-3). Finally, ZEN exposure interfered with follicular development, as evidenced by the reduced percentages of oocyte maturation and embryonic development when the offspring grew to adolescence. It is worth noting that maternal ZEN exposure disrupted the tri-methylation levels of H3K4, H3K9, and H3K27 in the offspring's oocytes. Our results indicated that maternal ZEN exposure affected ovarian development in offspring through the breast milk, which may be detrimental to their reproductive capability in adult life.