RESUMEN
KEY MESSAGE: Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.
Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ligamiento Genético , Fenotipo , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Setaria (Planta) , Resistencia a la Enfermedad/genética , Mapeo Cromosómico/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Setaria (Planta)/genética , Setaria (Planta)/microbiología , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Cromosomas de las Plantas/genéticaRESUMEN
In this work, silk was selected as the substrate, and formic acid was utilized to create a rough texture on the silk. The conductive fabrics made from AgNWs and silk were created by applying multiple layers of silver nanowire dispersion onto the textured silk fabrics (SFs). The silk was immersed in a dispersion containing polydopamine (PDA), sericin (SE), tannic acid (TA), and silver nanowire under specific temperature conditions. After being cured at 120 °C, the three silver nanowire/silk fabrics (AgNWs/SFs), PDA/AgNWs/SF, SE/AgNWs/SF, and TA/AgNWs/SF, exhibited square resistances of 7.37, 540, and 200 Ω/sq, respectively. The method used to prepare the AgNW conductive SF is straightforward, resulting in fabrics that possess excellent thermal stability and resistance to washing. These fabrics also exhibit a range of useful properties, including conductivity, electrothermal capabilities, electrochemical functionality, human body sensing, hydrophobicity, and antimicrobial properties. These characteristics make them highly promising for various applications, such as human body motion detection, electronic textiles, electrothermal textiles, and antimicrobial applications.
RESUMEN
In this study, a simple, green, and low-cost room temperature synthesis of broccoli-like silver nanoflowers (AgNF) with a particle size of about 300-500 nm was developed using plant-derived caffeic acid as a reducing agent and polyvinylpyrrolidone as a dispersant under ultrasound assistance. The flower clusters covered by small nanocrystals of 20-50 nm significantly enhance the electromagnetic field signals. AgNF was deposited on the surface of silicon wafers as a surface-enhanced Raman spectroscopy sensor for the detection of probe molecules such as rhodamine 6G (R6G) and malachite green with high sensitivity, homogeneity, and reproducibility. AgNF was deposited on cotton fabrics in the form of composites to catalyze the degradation of dye pollutants such as R6G, MG, and methyl orange in the presence of sodium borohydride. 0.1 g of AgNF/cotton fabric could assist 15 mmol/L NaBH4 to achieve over 90% degradation of various dyes as well as a high concentration of dyes in 12 min with good reusability and recyclability. The AgNF synthesized in this work can not only monitor the type and amounts of pollutants (dyes) in wastewater but also catalyze the rapid degradation of dyes, which is expected to be valuable for industrial applications.
RESUMEN
Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.
Asunto(s)
Oomicetos , Setaria (Planta) , Proteínas Hedgehog/metabolismo , Enfermedades de las Plantas , Hojas de la PlantaRESUMEN
Road crack detection is of paramount importance for ensuring vehicular traffic safety, and implementing traditional detection methods for cracks inevitably impedes the optimal functioning of traffic. In light of the above, we propose a USSC-YOLO-based target detection algorithm for unmanned aerial vehicle (UAV) road cracks based on machine vision. The algorithm aims to achieve the high-precision detection of road cracks at all scale levels. Compared with the original YOLOv5s, the main improvements to USSC-YOLO are the ShuffleNet V2 block, the coordinate attention (CA) mechanism, and the Swin Transformer. First, to address the problem of large network computational spending, we replace the backbone network of YOLOv5s with ShuffleNet V2 blocks, reducing computational overhead significantly. Next, to reduce the problems caused by the complex background interference, we introduce the CA attention mechanism into the backbone network, which reduces the missed and false detection rate. Finally, we integrate the Swin Transformer block at the end of the neck to enhance the detection accuracy for small target cracks. Experimental results on our self-constructed UAV near-far scene road crack i(UNFSRCI) dataset demonstrate that our model reduces the giga floating-point operations per second (GFLOPs) compared to YOLOv5s while achieving a 6.3% increase in mAP@50 and a 12% improvement in mAP@ [50:95]. This indicates that the model remains lightweight meanwhile providing excellent detection performance. In future work, we will assess road safety conditions based on these detection results to prioritize maintenance sequences for crack targets and facilitate further intelligent management.
RESUMEN
Imiquimod, known for its immune-modulating properties, has emerged as a potential anti-cancer agent. The U87 glioblastoma cell line, known for its high malignancy and poor prognosis, presents a significant challenge in neuro-oncology. Targeting the STAT-3/NF-κB pathways offers a promising therapeutic strategy for glioblastoma treatment. Imiquimod potentially inhibits these oncogenic signaling routes to suppress U87 cell proliferation and migration. We investigated the effect of imiquimod (IMQ) on U87 cell growth using CCK-8 and cell scratch assays. Western blotting analyzed protein levels of STAT-3, p-STAT-3, NF-κB and p-NF-κB, while flow cytometry assessed U87 cell apoptosis rates. ELISA detected cellular inflammatory factor levels. In vivo experiments further evaluated IMQ's impact on U87 cell growth. Findings suggest that IMQ suppresses U87 cell growth and movement, inhibits STAT-3 and NF-κB phosphorylation and accelerates apoptosis. ELISA assays indicated that IMQ reduced local inflammation. Adding a STAT-3 inhibitor yielded similar effects to IMQ, altering cell proliferation, migration and apoptosis. Overall, IMQ appears to inhibit U87 cell proliferation and migration, inducing programmed cell death through STAT-3 modulation.
Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Imiquimod , FN-kappa B , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Fosforilación/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismoRESUMEN
The dual-site synergistic effect in heterogeneous catalysis is quite interesting, and also complex because at least two substrate molecules are adsorbed or activated on the catalyst surface, which apparently needs two spatially separated and functionally independent active sites. It would become more difficult when the substrate molecules are large ones. The replacement of Al3+ in Al4 B6 O15 lattice with Co2+ leads to the formation of unsaturated Co2+ (4-fold coordination) along with oxygen vacancies (Ov ). The former one behaves as a medium-strength Lewis acid site, and can adsorb and activate molecules with a nitro group (e. g., ß-nitrostyrene). The latter one can adsorb and activate oxygen species, which further activates the indole derivatives. Next, the spatially separated dual sites on the catalyst surface can synergistically and efficiently catalyze their Friedel-Crafts alkylation reactions under mild conditions. The high durability can be proved by the as-maintained high yields, that is, 98, 93, 96, 92 and 90â % for 5 runs, respectively. The reaction kinetics obey the second-order characteristic. Annealing under hydrogen condition can further generate more surficial Ov , leading to an improvement to the catalytic activity. A simple and probably routine aliovalent doping endows such a complex synergistic catalysis involving two large substrate molecules, providing an inspired perspective of developing dual-site catalysts.
RESUMEN
BACKGROUND: Combining genetic variants with neuroimaging phenotypes may facilitate understanding of the biological mechanisms for the etiology and pharmacology of antidepressant treatment of major depressive disorder (MDD). PURPOSE: To explore the latent pathway of dopamine gene-hierarchical brain network-antidepressant treatment. STUDY TYPE: Retrospective. POPULATION: One hundred and sixty-eight MDD inpatients divided into responders (N = 98) or nonresponders (N = 70) based on the treatment outcome of antidepressant. FIELD STRENGTH/SEQUENCE: Diffusion tensors imaging and resting-state functional magnetic resonance imaging at 3.0T using echo-planar sequence. ASSESSMENT: Four genetic variations of the dopamine receptor D1 (DRD1) were genotyped. Strengths of rich-club, feeder, and local connections were calculated based on the rich-club organizations of structural and functional brain networks at baseline and following 4 weeks of selective serotonin reuptake inhibitor (SSRI) therapy. STATISTICAL TESTS: Logistic and linear regressions were used to analyze the impact of DRD1 multilocus genetic profile score on the treatment response of SSRI, and their associations with strengths of rich-club, feeder, and local connections. Mediation models were developed to explore the mediation role of rich-club organizations on the relationship between DRD1 and SSRI therapy response. A P value <0.05 was considered to be statistically significant. RESULTS: Multiple genetic variations of DRD1 were significantly related to the strengths of feeder connections both in structural and functional networks, and to the treatment response of SSRI. Furthermore, the strength of the structural feeder connection significantly modulated the effect of DRD1 variants on SSRI treatment outcome. DATA CONCLUSION: DRD1 displayed close connections both with SSRI treatment outcome and rich-club organizations of structural and functional data. Moreover, structural feeder connection played a mediating role in the relationship between DRD1 and antidepressant therapy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 4.
Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Imágenes de Resonancia Magnética Multiparamétrica , Receptores de Dopamina D1 , Antidepresivos/uso terapéutico , Encéfalo/patología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Variación Genética , Humanos , Receptores de Dopamina D1/genética , Estudios RetrospectivosRESUMEN
Annexin A7 has been confirmed in our previous research to be an important factor in lymph node metastasis (LNM) of hepatocellular carcinoma (HCC). SODD and ALG-2 are the binding proteins of Annexin A7 and can work in protein complexes. The present study was carried out with the constructed cell lines in mouse model of metastasis for further elaboration of possible mechanisms and identification of associated genes in the LNM of HCC. This experiment used inbred Chinese 615 mice, as well as Hca-F and Hca-P cells. Quantification of the relative messenger RNA (mRNA) expression of SODD and ALG-2 was realized by using qRT-PCR. Quantification of the protein expressions of SODD and ALG-2 was achieved by using western blot. Experimental mice (n=160) (6-8weeks old, 18-22g, SCXK [LIAO] 2008-0002) were randomly classified into four groups equally, which were separately inoculated with Hca-F, Hca-P, FAnxa7-upregulated, and PAnxa7-upregulated cells. Serum levels of SODD and ALG-2 were measured by ELISA. Immunohistochemical analysis of SODD and ALG-2 was further conducted. Tumor LNM-related factors of SODD and ALG-2 showed the same tendency in their expression correspondingly with the up-regulated expression of Annexin A7. Our experiment further explored the roles of SODD and ALG-2 based on Annexin A7 up-regulation vectors construction and the establishment of corresponding controls in vivo. Furthermore, the mouse model of primary tumors was constructed by injecting Hca-F, FAnxa7-upregulated and Hca-P, PAnxa7-upregulated cells into the mouse footpad. Mice were sacrificed at the designated time points for detecting SODD and ALG-2 expression in tumor tissue and serum samples. Collectively, our work indicates SODD in tumors and in serum and ALG-2 in serum are valuable in evaluating LNM in mice with HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Anexina A7/genética , Anexina A7/metabolismo , Biomarcadores , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Metástasis Linfática , RatonesRESUMEN
Neuroimaging biomarkers of treatment efficacy can be used to guide personalized treatment in major depressive disorder (MDD). Escitalopram is recommended as first-line therapy for MDD and severe depression. An interesting hypothesis suggests that the reconfiguration of dynamic brain networks might provide important insights into antidepressant mechanisms. The present study assesses whether the spatiotemporal modulation across functional brain networks could serve as a predictor of effective antidepressant treatment with escitalopram. A total of 106 first-episode, drug-naïve patients and 109 healthy controls from three different multicenters underwent resting-state functional magnetic resonance imaging. Patients were considered as responders if they had a reduction of at least 50% in Hamilton Rating Scale for Depression scores at endpoint (>2 weeks). Multilayer modularity framework was applied on the whole brain to construct features in relation to network dynamic characters that were used for multivariate pattern analysis. Linear soft-threshold support vector machine models were used to separate responders from nonresponders. The permutation tests demonstrated the robustness of discrimination performances. The discriminative regions formed a spatially distributed pattern with anterior cingulate cortex (ACC) as the hub in the default mode subnetwork. Interestingly, a significantly larger module allegiance of ACC was also found in treatment responders compared to nonresponders, suggesting high interactivities of ACC to other regions may be beneficial for the recovery after treatment. Consistent results across multicenters confirmed that ACC could serve as a predictor of escitalopram monotherapy treatment outcome, implying strong likelihood of replication in the future.
Asunto(s)
Antidepresivos de Segunda Generación/uso terapéutico , Citalopram/uso terapéutico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Giro del Cíngulo/diagnóstico por imagen , Adulto , Biomarcadores , Mapeo Encefálico , Estudios de Cohortes , Trastorno Depresivo Mayor/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Valor Predictivo de las Pruebas , Escalas de Valoración Psiquiátrica , Máquina de Vectores de Soporte , Adulto JovenRESUMEN
BACKGROUND: In order to reduce unsuccessful treatment trials for depression, neuroimaging and genetic information can be considered as biomarkers. Together with machine-learning methods, prediction models have proved to be valuable for baseline prediction. PURPOSE: To propose an ensemble learning modeling framework that integrates imaging and genetic information for individualized baseline prediction of early-stage treatment response of antidepressants in major depressive disorder (MDD). STUDY TYPE: Prospective. SUBJECTS: In all, 98 inpatients with MDD. FIELD STRENGTH/SEQUENCE: 3.0T MRI and gradient-echo echo-planar imaging sequence. ASSESSMENT: Participants were divided into responders and nonresponders based on reducing rates of HDRS-6 after early-stage treatment of 2 weeks. Fourteen brain regions of interest were selected according to previous studies. An ensemble learning modeling framework was used to integrate imaging data and genetic data. STATISTICAL TESTS: Support vector machine (SVM) with linear kernel was utilized to integrate multimode information and then to construct the prediction model. Leave-one-out cross-validation (LOOCV) was used to evaluate the performance. The position characteristics obtained through SVM-RFE (recursive feature elimination) algorithm and LOOCV was considered to compare each feature's relative importance for the prediction model. RESULTS: Compared with the single-level prediction model, the ensemble learning prediction model showed improvement in prediction performance (accuracy from 0.61 to 0.86 with imaging data and genetic data). Integrated with 14 priori brain regions, the region of interest (ROI) map ensemble learning prediction model can achieve a performance that is analogous with the model with information from whole-brain regions (both with accuracy of 0.81). The integration of genetic features further improved the sensitivity of prediction (sensitivity from 0.78 to 0.87 under the ensemble learning framework). DATA CONCLUSION: Our ensemble learning prediction model demonstrated significant advantages in interpretability and information integration. The findings may provide more assistance for clinical treatment selection in MDD at the individual level. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:161-171.
Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Máquina de Vectores de Soporte , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Aprendizaje Automático , Estudios ProspectivosRESUMEN
Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the 'Snow Dragon' in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Regiones Árticas , Monitoreo del Ambiente , Sedimentos GeológicosRESUMEN
OBJECTIVE: Misdiagnosis of bipolar disorder (BD) as unipolar disorder (UD) may cause improper treatment strategy to be chosen, especially in the early stages of disease. The aim of this study was to characterize alterations in specific brain networks for depressed patients who transformed into BD (tBD) from UD. METHOD: The module allegiance from resting-fMRI by applying a multilayer modular method was estimated in 99 patients (33 tBD, 33 BD, 33 UD) and 33 healthy controls (HC). A classification model was trained on tBD and UD patients. HC was used to explore the functional declination patterns of BD, tBD, and UD. RESULTS: Based on our classification model, difference mainly reflected in default-mode network (DMN). Compared with HC, both BD and tBD focused on the difference of somatomotor network (SMN), while UD on the abnormity of DMN. The patterns of brain network between patients with BD and tBD were well-overlapped, except for cognitive control network (CCN). CONCLUSION: The functional declination of internal interaction in DMN was suggested to be useful for the identification of BD from UD in the early stage. The higher recruitment of DMN may predispose patients to depressive states, while higher recruitment of SMN makes them more sensitive to external stimuli and prone to mania. Furthermore, CCN may be a critical network for identifying different stages of BD, suggesting that the onset of mania in depressed patients is accompanied by CCN related cognitive impairments.
Asunto(s)
Trastorno Bipolar/diagnóstico , Trastorno Depresivo Mayor/diagnóstico , Adulto , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Depresión , Trastorno Depresivo Mayor/fisiopatología , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Descanso , Medición de RiesgoRESUMEN
BACKGROUND: Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects is therefore highly desirable. Here, we show a new type of terbium oxide nanoparticles (Tb4O7 NPs) with intrinsic oxidase-like activity for in vitro and in vivo antibacterial application. RESULTS: We find that Tb4O7 NPs can quickly oxidize a series of organic substrates in the absence of hydrogen peroxide. The oxidase-like capacity of Tb4O7 NPs allows these NPs to consume antioxidant biomolecules and generate reactive oxygen species to disable bacteria in vitro. Moreover, the in vivo experiments showed that Tb4O7 NPs are efficacious in wound-healing and are protective of normal tissues. CONCLUSIONS: Our results reveal that Tb4O7 NPs have intrinsic oxidase-like activity and show effective antibacterial ability both in vitro and in vivo. These findings demonstrate that Tb4O7 NPs are effective antibacterial agents and may have a potential application in wound healing.
Asunto(s)
Antibacterianos/química , Escherichia coli , Nanopartículas del Metal/química , Óxidos/química , Oxidorreductasas/química , Staphylococcus aureus , Terbio/química , Cicatrización de Heridas , Animales , Antibacterianos/farmacología , Materiales Biocompatibles/química , Supervivencia Celular , Escherichia coli/efectos de los fármacos , Hemólisis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones Endogámicos BALB C , Óxidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Terbio/farmacologíaRESUMEN
The objective of this study was to unveil insights into the effects of Saccharomyces cerevisiae on the development of volatile compounds and metabolites during the dough fermentation in making Chinese steamed bread. Changes in gluten structure under the influence of baker's yeast were studied using scanning electron micrographs (SEM). A unique aroma profile was found comprising some previously reported aromatic compounds and some unreported aromatic aldehydes ((E)-2-Decenal and 2-Undecenal) and ketones (2-Heptanone and 2-Nonanone) in the baker's yeast fermentation. Among metabolites, the most preferred sugar for this yeast (glucose) showed a significant decrease in contents during the initial few hours of the fermentation and at last an increase was observed. However, most of the amino acids increased either slightly or decreased by the fermentation time. SEM of fermented dough showed that the yeast had a very little effect on starch stability. This study provided some fermentation features of the bakers' yeast which could be used for the tailored production of steamed bread.
RESUMEN
We unveiled the association of Annexin A7 with vascular endothelial growth factor-C (VEGF-C) and the effect of upregulation of Annexin A7 in Hca-F and Hca-P cells on inhibiting hepatocarcinoma (HCC) lymph node metastasis (LNM) in vitro and in vivo. A total of 200 inbred 615 mice were randomly divided into four equal groups inoculated with Hca-F, Hca-P, FAnxa7-upregulated, and PAnxa7-upregulated cells, respectively. The primary tumor, popliteal, inguinal, and iliac lymph nodes were prepared for immunohistochemical (IHC) staining, real-time quantitative polymerase chain reaction (qRT-PCR) analysis, Western blot, and hematoxylin-eosin (H&E) staining. There was over 50 % increase both in the number of FAnxa7-upregulated and PAnxa7-upregulated cells migrated through the filter compared to their controls (FAnxa7-control, Hca-F and PAnxa7-control, Hca-P). However, no significant differences were noted in invasion ability between them (all P > 0.05). Tumor lymph vessels were significantly reduced in FAnxa7-upregulated and PAnxa7-upregulated tumors when compared with Hca-F and Hca-P tumors (all P < 0.05). Blood vessel density did not differ significantly between FAnxa7-upregulated and PAnxa7-upregulated tumors and Hca-F and Hca-P tumors. Enzyme-linked immunosorbent assay (ELISA) for VEGF-C showed that upregulating Annexin A7 decreased VEGF-C secretion in FAnxa7-upregulated and PAnxa7-upregulated cells (P < 0.05). The IHC staining result showed that the level of serum Annexin A7 was found to be statistically higher in all experimental groups than that in the control group (P < 0.05). The present results indicated that alterations in serum Annexin A7 expression may be of prognostic relevance in HCC lymphatic metastasis.
Asunto(s)
Anexina A7/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Metástasis Linfática , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Regulación hacia Arriba , Factor C de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Part-set cuing facilitation and impairment effects are rarely found in spatial memory, which is a challenge to the theories of part-set cuing effects based on lexical stimulus. This study aims to investigate whether there part-set cuing facilitation and impairment effects are present in spatial memory by constructing two types of memory scenes with high and low degrees of interitem associations, achieved by manipulating the presentation of miniatures. This study examined the effects of different part-set cues on free recall, recognition, and reconstruction tasks. The results of two experiments revealed that matrix cues impaired the performance of three recall tasks in memory scenes with a high degree of interitem associations, and scene cues facilitated the reconstruction performance (Experiment 1). Conversely, in memory scenes with a low degree of interitem associations, the impairment effect of matrix cues was not observed in the three recall tasks, but scene cues still facilitated the reconstruction performance (Experiment 2). These findings supported the retrieval strategy disruption hypothesis, the two-mechanism and the multi-mechanism accounts, demonstrating the significance of interitem associations in spatial memory. Furthermore, the results provided direct evidence for the importance of the encoding-retrieval strategy matching principle in spatial memory tasks.
RESUMEN
Different from the common perspective of average structure, we propose that the locally elongated metal-oxygen bonds induced by La3+-to-Y3+ substitution to a Lewis acid α-YB5O9 generate medium-strength basic sites. Experimentally, NH3- and CO2-TPD experiments prove that the La3+ doping of α-Y1-xLaxB5O9 (0 ≤ x ≤ 0.24) results in the emergence of new medium-strength basic sites and the increasing La3+ concentration modifies the number, not the strength, of the acidic and basic sites. The catalytic IPA conversion exhibits a reversal of the product selectivity, i.e., from 93% of propylene for α-YB5O9 to â¼90% of acetone for α-Y0.76La0.24B5O9, which means the La3+ doping gradually turns the solid from a Lewis acid to a Lewis base. Besides, α-Y0.76RE0.24B5O9 (RE = Ce, Eu, Gd, Tm) compounds were prepared to consolidate the above conjecture, where the acetone selectivity exhibits a linear dependence on the ionic radius (or electronegativity). This work suggests that the substitution-induced local structure change deserves more attention.
RESUMEN
Background: γ-aminobutyric acid (GABA) and its main receptor, the GABAA receptor, are implicated in major depressive disorder (MDD). Anxious depression (AD) is deemed to be a primary subtype of MDD. The amygdala and the dorsolateral prefrontal cortex (DLPFC) are key brain regions involved in emotional regulation. These regions contain the most GABAA receptors. Although the GABAergic deficit hypothesis of MDD is generally accepted, few studies have demonstrated how GABAA receptor gene polymorphisms affect the functions of specific brain regions, in particular, the amygdala and the DLPFC. Methods: The sample comprised 83 patients with AD, 70 patients with non-anxious depression (NAD), and 62 healthy controls (HC). All participants underwent genotyping for polymorphisms of GABAA receptor subunit genes, followed by a resting-state fMRI scan. The HAMD-17 was used to evaluate the severity of MDD. ANOVA was performed to obtain the difference in the imaging data, GABAA receptor multi-locus genetic profile scores (MGPS), and HAMD-17 scores among three groups, then the significant differences between AD and NAD groups were identified. Mediating effect analysis was used to explore the role of functional connectivity (FC) between the amygdala and DLPFC in the association between the GABAA receptor gene MGPS and AD clinical features. Results: Compared with the NAD group, the AD group had a higher GABAA receptor MGPS. AD patients exhibited a negative correlation between the MGPS and FC of the right centromedial (CM) subregion, and the right middle frontal gyrus (MFG). A negative correlation was also observed between the MGPS and anxiety/somatic symptoms. More importantly, the right CM and right MFG connectivity mediated the association between the GABAA receptor MGPS and anxiety/somatic symptoms in patients with AD. Conclusion: The decreased FC between the right MFG and right CM subregion mediates the association between GABAA receptor MGPS and AD.
RESUMEN
Aims: This study aims to investigate the effects of coronary collateral circulation (CCC) on the prognosis of chronic total occlusion (CTO) patients with or without metabolic syndrome (MetS). Methods: The study included 342 CTO patients who underwent successful percutaneous coronary intervention at the People's Hospital of Liaoning Province between 1 February 2021 and 30 September 2023. The Rentrop score was used to assess the status of CCC. The outcome was major adverse cardiovascular and cerebrovascular events (MACCEs), defined as a composite of all-cause mortality, cardiac death, non-fatal myocardial infarction (MI), target vessel revascularization (TVR), and non-fatal stroke. Univariate and multivariate logistic analyses were used to investigate the association of CCC, MetS, and MACCEs with odds ratios (ORs) and 95% confidence intervals (CIs). The effect of CCC was further investigated in different MetS, diabetes mellitus (DM), and Syntax score groups. Results: MACCEs were more common in patients with poor CCC compared to those with good CCC (38.74% vs. 16.56%). Statistical differences were found in MACCEs (OR = 3.33, 95% CI: 1.93-5.72), MI (OR = 3.11, 95% CI: 1.73-5.58), TVR (OR = 3.06, 95% CI: 1.70-5.53), and stent thrombosis (OR = 6.14, 95% CI: 2.76-13.65) between the good and poor CCC groups. Poor CCC patients with MetS had a higher incidence of MACCEs (OR = 4.21, 95% CI: 2.05-8.65), non-fatal MI (OR = 4.44, 95% CI: 2.01-9.83), TVR (OR = 3.28, 95% CI: 1.51-7.11), and stent thrombosis (OR = 10.80, 95% CI: 3.11-37.54). Similar findings were also observed in CTO patients with DM and a Syntax score ≥23. Conclusion: Poor CCC could increase the risk of MACCEs in CTO patients, particularly those with MetS, DM, and a Syntax score ≥23. Further prospective, multicenter studies are needed to validate our findings and to explore potential therapeutic interventions.