Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Gastroenterol Hepatol ; 39(8): 1695-1703, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804845

RESUMEN

BACKGROUND AND AIM: Hydronidone (HDD) is a novel pirfenidone derivative developed initially to reduce hepatotoxicity. Our previous studies in animals and humans have demonstrated that HDD treatment effectively attenuates liver fibrosis, yet the underlying mechanism remains unclear. This study aimed to investigate whether HDD exerts its anti-fibrotic effect by inducing apoptosis in activated hepatic stellate cells (aHSCs) through the endoplasmic reticulum stress (ERS)-associated mitochondrial apoptotic pathway. METHODS: The carbon tetrachloride (CCl4)- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis models were used for in vivo studies. In vitro studies were conducted using the human hepatic stellate cell line LX-2. The apoptotic effect of HDD on aHSCs was examined using TUNEL and flow cytometry assays. The small interfering RNA (siRNA) technique was employed to downregulate the expression of interest genes. RESULTS: HDD treatment significantly promoted apoptosis in aHSCs in both the CCl4- and DDC-induced liver fibrosis in mice and LX-2 cells. Mechanistic studies revealed that HDD triggered ERS and subsequently activated the IRE1α-ASK1-JNK pathway. Furthermore, the influx of cytochrome c from the mitochondria into the cytoplasm was increased, leading to mitochondrial dysfunction and ultimately triggering apoptosis in aHSCs. Notably, inhibition of IRE1α or ASK1 by siRNA partially abrogated the pro-apoptotic effect of HDD in aHSCs. CONCLUSIONS: The findings of both in vivo and in vitro studies suggest that HDD induces apoptosis in aHSCs via the ERS-associated mitochondrial apoptotic pathway, potentially contributing to the amelioration of liver fibrosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células Estrelladas Hepáticas , Cirrosis Hepática , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Tetracloruro de Carbono , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Línea Celular , Piridonas/farmacología , Ratones , MAP Quinasa Quinasa Quinasa 5/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
2.
Surg Endosc ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090202

RESUMEN

BACKGROUND: The effect of tumor budding (TB) on the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after endoscopic submucosal dissection (ESD) remains unclear. We evaluated the long-term outcomes of patients with superficial ESCC after ESD and the risk factors of TB for the long-term prognosis. METHODS: We conducted a retrospective study in a Chinese hospital. All patients with ESCC treated by ESD and reported TB were included consecutively. Comparative analyses were conducted in three parts: specimen analysis, follow-up analyses of unmatched patients, and propensity score-matched (PSM) patients. Cox proportional hazard regression models were constructed to identify risk factors for overall survival and recurrence-free survival (RFS). RESULTS: A total of 437 patients were enrolled [154 TB and 283 no tumor budding (NTB)], and 258 patients (52 TB and 206 NTB) were included in the follow-up analysis. Results showed that the invasion depth, differentiation type, and positive vascular invasion (all p < 0.001) of the TB group were significantly different from the NTB group. The all-cause mortality and the median RFS time between the two groups were comparable. RFS rate at 5 years were 84.6% and 80.6%, respectively (p = 0.43). Cox analyses identified that having other cancers but not TB, as a risk factor independently associated with overall survival and RFS after ESD. CONCLUSION: TB tends to be associated with invasion depth, differentiation type, and positive vascular invasion. However, it might not affect the long-term outcomes of patients with superficial ESCC after ESD when other high-risk factors are negative.

3.
Liver Int ; 43(11): 2523-2537, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37641479

RESUMEN

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction that eventually leads to cirrhosis. Hydronidone is a new pyridine derivative with the potential to treat liver fibrosis. In this study, we explored the antifibrotic effects of hydronidone and its potential mode of action. METHODS: The anti-hepatic fibrosis effects of hydronidone were studied in carbon tetrachloride (CCl4 )- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced animal liver fibrosis. The antifibrotic mechanisms of hydronidone were investigated in hepatic stellate cells (HSCs). The antifibrotic effect of hydronidone was further tested after Smad7 knockdown in HSCs in mouse models of fibrosis. RESULTS: In animal models, hydronidone attenuated liver damage and collagen accumulation, and reduced the expression of fibrosis-related genes. Hydronidone decreased the expression of fibrotic genes in HSCs. Impressively, hydronidone significantly upregulated Smad7 expression and promoted the degradation of transforming growth factor ß receptor I (TGFßRI) in HSCs and thus inhibited the TGFß-Smad signalling pathway. Specific knockdown of Smad7 in HSCs in vivo blocked the antifibrotic effect of hydronidone. CONCLUSION: Hydronidone ameliorates liver fibrosis by inhibiting HSCs activation via Smad7-mediated TGFßRI degradation. Hydronidone is a potential drug candidate for the treatment of liver fibrosis.


Asunto(s)
Cirrosis Hepática , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Ratones , Tetracloruro de Carbono/toxicidad , Tetracloruro de Carbono/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Proteína smad7/efectos de los fármacos , Proteína smad7/metabolismo
4.
Biochem Biophys Res Commun ; 557: 135-142, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33865221

RESUMEN

Gastric cancer (GC) is the most common cancer worldwide. Although advances in the treatments, the oncogenic mechanisms are still largely unknown. RNF168 (ring-finger nuclear factor 168) is an important regulator of DNA double-strand break (DSB) repair, and its defects have been involved in the pathogenesis of a number of human diseases including cancer. However, its effects on GC are still unclear. In the study, we demonstrated that RNF168 expression was remarkably down-regulated in human GC tissues, and its low expression showed worse overall survival rate in GC patients. Importantly, we here reported that RNF168 directly interacted with Ras homolog gene family member C (RHOC) and induced its ubiquitination to promote RHOC degradation. RHOC exhibited higher expression in human GC tissues, and its knockdown significantly restrained cell proliferation, migration and invasion in GC cell lines. Moreover, RHOC knockdown led to a significant reduction in GC tumor growth in a xenograft mouse model. Additionally, histone deacetylase 1 (HDAC1) was found to be markedly decreased in GC cells with RHOC knockdown. Intriguingly, RHOC suppression-ameliorated proliferative and migratory ability in GC cells were significantly diminished by HDAC1 over-expression. Our in vivo studies finally confirmed that RHOC inhibition dramatically reduced the lung metastasis in nude mice. Collectively, all our results demonstrated that RNF168 directly interacted with RHOC to induce its degradation via promoting its ubiquitination, contributing to the inhibition of cell proliferation and metastasis in GC through decreasing HDAC1. Thus, targeting RNF168/RHOC/HDAC1 axis might be promising to develop effective therapies for GC treatment.


Asunto(s)
Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Histona Desacetilasa 1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína rhoC de Unión a GTP/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/genética , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína rhoC de Unión a GTP/genética
7.
iScience ; 26(5): 106572, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37124414

RESUMEN

Liver non-parenchymal cells (NPCs) play a critical role in the progression of non-alcoholic steatohepatitis (NASH). We aimed to explore the heterogeneity of NPCs and identify NASH-specific subpopulations contributing to NASH progression. Through single-cell RNA sequencing, we uncovered a proinflammatory subpopulation of Itgadhi/Fcrl5hi macrophages with potential function of modulating macrophage accumulation and promoting NASH development. We also identified subpopulations of Egr1hi and Ly6ahi liver sinusoidal endothelial cells (LSECs), which might participate in pathological angiogenesis and inflammation regulation. The Itgadhi/Fcrl5hi macrophages, Egr1hi LSECs, and Ly6ahi LSECs emerged in the early stage and expanded significantly along with pathological progression of liver injury during NASH. Cell-cell interactions between hepatic stellate cells (HSCs) and Itgadhi/Fcrl5hi macrophages, Egr1hi LSECs or Ly6ahi LSECs were enhanced in NASH liver. Our results revealed that expansion of Itgadhi/Fcrl5hi macrophages, Egr1hi LSECs or Ly6ahi LSECs was strongly associated with NASH severity, suggesting these subpopulations might be involved in NASH progression.

8.
Clin Transl Gastroenterol ; 13(1): e00433, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35130184

RESUMEN

INTRODUCTION: Conventional white light imaging (WLI) endoscopy is the most common screening technique used for detecting early esophageal squamous cell carcinoma (ESCC). Nevertheless, it is difficult to detect and delineate margins of early ESCC using WLI endoscopy. This study aimed to develop an artificial intelligence (AI) model to detect and delineate margins of early ESCC under WLI endoscopy. METHODS: A total of 13,083 WLI images from 1,239 patients were used to train and test the AI model. To evaluate the detection performance of the model, 1,479 images and 563 images were used as internal and external validation data sets, respectively. For assessing the delineation performance of the model, 1,114 images and 211 images were used as internal and external validation data sets, respectively. In addition, 216 images were used to compare the delineation performance between the model and endoscopists. RESULTS: The model showed an accuracy of 85.7% and 84.5% in detecting lesions in internal and external validation, respectively. For delineating margins, the model achieved an accuracy of 93.4% and 95.7% in the internal and external validation, respectively, under an overlap ratio of 0.60. The accuracy of the model, senior endoscopists, and expert endoscopists in delineating margins were 98.1%, 78.6%, and 95.3%, respectively. The proposed model achieved similar delineating performance compared with that of expert endoscopists but superior to senior endoscopists. DISCUSSION: We successfully developed an AI model, which can be used to accurately detect early ESCC and delineate the margins of the lesions under WLI endoscopy.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Inteligencia Artificial , Endoscopía , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/diagnóstico , Humanos , Márgenes de Escisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA