Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bioorg Med Chem Lett ; 27(15): 3468-3471, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28622881

RESUMEN

Discovery of sofosbuvir has radically changed hepatitis C treatment and nucleoside/tide NS5B inhibitors are now viewed as one of the key components in combination therapies with other direct-acting antiviral agents. As part of our program to identify new nucleoside inhibitors of HCV replication, we now wish to report on the discovery of ß-d-2'-deoxy-2'-dichlorouridine nucleotide prodrugs as potent inhibitors of HCV replication. Although, cytidine analogues have long been recognized to be metabolized to both cytidine and uridine triphosphates through the action of cytidine deaminase, uridine analogues are generally believed to produce exclusively uridine triphosphate. Detailed investigation of the intracellular metabolism of our newly discovered uridine prodrugs, as well as of sofosbuvir, has now revealed the formation of both uridine and cytidine triphosphates. This occurs, not only in vitro in cell lines, but also in vivo upon oral dosing to dogs.


Asunto(s)
Antivirales/farmacología , Desoxiuridina/análogos & derivados , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Profármacos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/química , Antivirales/metabolismo , Células Cultivadas , Desoxiuridina/química , Desoxiuridina/metabolismo , Desoxiuridina/farmacología , Perros , Descubrimiento de Drogas , Hepacivirus/fisiología , Hepatitis C/virología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Profármacos/química , Profármacos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Microbiology (Reading) ; 161(Pt 2): 430-440, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25481877

RESUMEN

Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in C. acetobutylicum has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in C. acetobutylicum, experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway's primary role in C. acetobutylicum is arabinose metabolism.


Asunto(s)
Aldehído-Liasas/metabolismo , Arabinosa/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/crecimiento & desarrollo , Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Vía de Pentosa Fosfato
3.
Microb Cell Fact ; 13: 139, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25231163

RESUMEN

BACKGROUND: Clostridium acetobutylicum fermentations are promising for production of commodity chemicals from heterogeneous biomass due to the wide range of substrates the organism can metabolize. Much work has been done to elucidate the pathways for utilization of aldoses, but little is known about metabolism of more oxidized substrates. Two oxidized hexose derivatives, gluconate and galacturonate, are present in low cost feedstocks, and their metabolism will contribute to overall metabolic output of these substrates. RESULTS: A complete metabolic network for glucose, gluconate, and galacturonate utilization was generated using online databases, previous studies, genomic context, and experimental data. Gluconate appears to be metabolized via the Entner-Doudoroff pathway, and is likely dehydrated to 2-keto-3-deoxy-gluconate before phosphorylation to 2-keto-3-deoxy-6-P-gluconate. Galacturonate appears to be processed via the Ashwell pathway, converging on a common metabolite for gluconate and galacturonate metabolism, 2-keto-3-deoxygluconate. As expected, increasingly oxidized substrates resulted in increasingly oxidized products with galacturonate fermentations being nearly homoacetic. Calculations of expected ATP and reducing equivalent yields and experimental data suggested galacturonate fermentations were reductant limited. Galacturonate fermentation was incomplete, which was not due solely to product inhibition or the inability to utilize low concentrations of galacturonate. Removal of H2 and CO2 by agitation resulted in faster growth, higher cell densities, formation of relatively more oxidized products, and higher product yields for cultures grown on glucose or gluconate. In contrast, cells grown on galacturonate showed reduced growth rates upon agitation, which was likely due to loss in reductant in the form of H2. The growth advantage seen on agitated glucose or gluconate cultures could not be solely attributed to improved ATP economics, thereby indicating other factors are also important. CONCLUSIONS: The metabolic network presented in this work should facilitate similar reconstructions in other organisms, and provides a further understanding of the pathways involved in metabolism of oxidized feedstocks and carbohydrate mixtures. The nearly homoacetic fermentation during growth on galacturonate indicates further optimization of this and related organisms could provide a route to an effective biologically derived acetic acid production platform. Furthermore, the pathways could be targeted to decrease production of undesirable products during fermentations of heterogeneous biomass.


Asunto(s)
Clostridium acetobutylicum/metabolismo , Fermentación , Hexosas/metabolismo , Acetatos/metabolismo , Adenosina Trifosfato/metabolismo , Reactores Biológicos/microbiología , Carbono/farmacología , Dióxido de Carbono/metabolismo , Cromatografía Líquida de Alta Presión , Clostridium acetobutylicum/efectos de los fármacos , Clostridium acetobutylicum/crecimiento & desarrollo , Fermentación/efectos de los fármacos , Ácidos Hexurónicos/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
4.
Appl Microbiol Biotechnol ; 97(10): 4651-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22843424

RESUMEN

The transformation of trinitrotoluene (TNT) by several mutant strains of Clostridium acetobutylicum has been examined to analyze the maximal rate of initial transformation, determine the effects of metabolic mutations of the host on transformation rate, and to assess the cell metabolic changes brought about during TNT transformation. Little difference in the maximal rate of TNT degradation in early acid phase cultures was found between the parental ATCC 824 strain and strains altered in the acid forming pathways (phosphotransacetylase, or butyrate kinase) or in a high-solvent-producing strain (mutant B). This result is in agreement with the previous findings of a similar degradation rate in a degenerate strain (M5) that had lost the ability to produce solvent. A series of antisense constructs were made that reduced the expression of hydA, encoding the Fe-hydrogenase, or hydE and hydF, genes encoding hydrogenase maturating proteins. While the antisense hydA strain had only ∼30 % of the activity of wild type, the antisense hydE strain exhibited a TNT degradation rate around 70 % that of the parent. Overexpression of hydA modestly increased the TNT degradation rate in acid phase cells, suggesting the amount of reductant flowing into hydrogenase rather than the hydrogenase level itself was a limiting factor in many situations. The redox potential, hydrogen evolution, and organic acid metabolites produced during rapid TNT transformation in early log phase cultures were measured. The redox potential of the acid-producing culture decreased from -370 to -200 mV immediately after addition of TNT and the hydrogen evolution rate decreased, lowering the hydrogen to carbon dioxide ratio from 1.4 to around 1.1 for 15 min. During the time of TNT transformation, the treated acidogenic cells produced less acetate and more butyrate. The results show that during TNT transformation, the cells shift metabolism away from hydrogen formation to reduction of TNT and the resulting effects on cell redox cofactors generate a higher proportion of butyrate.


Asunto(s)
Clostridium acetobutylicum/metabolismo , Trinitrotolueno/metabolismo , Secuencia de Bases , Clostridium acetobutylicum/genética , Colorimetría , Cartilla de ADN , Fermentación , Hidrólisis , Oxidación-Reducción , Plásmidos
5.
iScience ; 26(7): 107140, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37404371

RESUMEN

Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.

6.
Bioorg Med Chem Lett ; 22(21): 6721-7, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23010268

RESUMEN

A set of low molecular weight compounds containing a hydroxyethylamine (HEA) core structure with different prime side alkyl substituted 4,5,6,7-tetrahydrobenzazoles and one 4,5,6,7-tetrahydropyridinoazole was synthesized. Striking differences were observed on potencies in the BACE-1 enzymatic and cellular assays depending on the nature of the heteroatoms in the bicyclic ring, from the low active compound 4 to inhibitor 6, displaying BACE-1 IC(50) values of 44 nM (enzyme assay) and 65 nM (cell-based assay).


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Azoles/síntesis química , Benzoxazoles/síntesis química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Etilaminas/síntesis química , Piridinas/síntesis química , Animales , Azoles/química , Azoles/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Etilaminas/química , Etilaminas/farmacología , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Piridinas/química , Piridinas/farmacología
7.
Bioorg Med Chem Lett ; 22(9): 3265-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22472694

RESUMEN

4'-Azido-2'-deoxy-2'-methylcytidine (14) is a potent nucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase, displaying an EC(50) value of 1.2 µM and showing moderate in vivo bioavailability in rat (F=14%). Here we describe the synthesis and biological evaluation of 4'-azido-2'-deoxy-2'-methylcytidine and prodrug derivatives thereof.


Asunto(s)
Antivirales/química , Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Hepacivirus/efectos de los fármacos , Profármacos/farmacología , Animales , Antivirales/farmacología , Citidina/farmacología , Desoxicitidina/farmacología , Descubrimiento de Drogas , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Ratas , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
8.
Bioorg Med Chem Lett ; 21(1): 358-62, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21112780

RESUMEN

Two types of P1-P3-linked macrocyclic renin inhibitors containing the hydroxyethylene isostere (HE) scaffold just outside the macrocyclic ring have been synthesized. An aromatic or aliphatic substituent (P3sp) was introduced in the macrocyclic ring aiming at the S3 subpocket (S3sp) in order to optimize the potency. A 5-6-fold improvement in both the K(i) and the human plasma renin activity (HPRA)IC(50) was observed when moving from the starting linear peptidomimetic compound 1 to the most potent macrocycle 42 (K(i) = 3.3 nM and HPRA IC(50) = 7 nM). Truncation of the prime side of 42 led to 8-10-fold loss of inhibitory activity in macrocycle 43 (K(i) = 34 nM and HPRA IC(50) = 56 nM). All macrocycles were epimeric mixtures in regard to the P3sp substituent and X-ray crystallographic data of the representative renin macrocycle 43 complex showed that only the S-isomer buried the substituent into the S3sp. Inhibitory selectivity over cathepsin D (Cat-D) and BACE-1 was also investigated for all the macrocycles and showed that truncation of the prime side increased selectivity of inhibition in favor of renin.


Asunto(s)
Compuestos Macrocíclicos/química , Inhibidores de Proteasas/síntesis química , Renina/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Catepsina D/antagonistas & inhibidores , Catepsina D/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Renina/metabolismo
9.
Sci Rep ; 11(1): 29, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420096

RESUMEN

Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.

10.
Microbiology (Reading) ; 156(Pt 11): 3478-3491, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20656779

RESUMEN

Transcriptional analysis was performed on Clostridium acetobutylicum with the goal of identifying sugar-specific mechanisms for the transcriptional regulation of transport and metabolism genes. DNA microarrays were used to determine transcript levels from total RNA isolated from cells grown on media containing eleven different carbohydrates, including two pentoses (xylose, arabinose), four hexoses (glucose, mannose, galactose, fructose), four disaccharides (sucrose, lactose, maltose, cellobiose) and one polysaccharide (starch). Sugar-specific induction of many transport and metabolism genes indicates that these processes are regulated at the transcriptional level and are subject to carbon catabolite repression. The results show that C. acetobutylicum utilizes symporters and ATP-binding cassette (ABC) transporters for the uptake of pentose sugars, while disaccharides and hexoses are primarily taken up by phosphotransferase system (PTS) transporters and a gluconate : H(+) (GntP) transporter. The transcription of some transporter genes was induced by specific sugars, while others were induced by a subset of the sugars tested. Sugar-specific transport roles are suggested, based on expression comparisons, for various transporters of the PTS, the ABC superfamily and members of the major facilitator superfamily (MFS), including the GntP symporter family and the glycoside-pentoside-hexuronide (GPH)-cation symporter family. Additionally, updates to the C. acetobutylicum genome annotation are proposed, including the identification of genes likely to encode proteins involved in the metabolism of arabinose and xylose via the pentose phosphate pathway.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Represión Catabólica , Clostridium acetobutylicum/metabolismo , Perfilación de la Expresión Génica , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Clostridium acetobutylicum/genética , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , ARN Bacteriano/genética , Transcripción Genética
11.
Sci Rep ; 8(1): 15594, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30349057

RESUMEN

Food waste represents an underutilized resource for commodity chemical generation. Constituents of the human gut microbiota that are already adapted to a food waste stream could be repurposed for useful chemical production. Industrial fermentations utilizing these microbes maintain organisms in isolation; however, microbial consortia offer an attractive alternative to monocultures in that metabolic interactions may result in more efficient processes with higher yields. Here we computationally assess the ability of co-cultures vs. monocultures to anaerobically convert a Western diet to commodity chemicals. The combination of genome-scale metabolic models with flux-balance analysis predicts that every organism analyzed can benefit from interactions with another microbe, as evidenced by increased biomass fluxes in co-culture vs. monoculture. Furthermore, microbe combinations result in emergent or increased commodity chemical production including butanol, methane, formaldehyde, propionate, hydrogen gas, and urea. These overproducing co-cultures are enriched for mutualistic and commensal interactions. Using Clostridium beijerinckii co-cultures as representative examples, models predict cross-fed metabolites will simultaneously modify multiple internal pathways, evident by different internal metabolic network structures. Differences in degree and betweenness centrality of hub precursor metabolites were correlated to C. beijerinckii metabolic outputs, and thus demonstrate the potential of co-cultures to differentially direct metabolisms to useful products.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Residuos de Alimentos , Microbioma Gastrointestinal , Alcoholes/metabolismo , Biocombustibles/microbiología , Técnicas de Cocultivo/métodos , Humanos , Urea/metabolismo
12.
mSystems ; 3(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374459

RESUMEN

Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.

13.
FEMS Microbiol Lett ; 261(2): 211-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16907722

RESUMEN

The oxidative stress response of obligate anaerobe, Bacteroides fragilis, is partially controlled by the redox regulator OxyR but an oxyR null mutant maintains a high level of aerotolerance. Studies using two-dimensional polyacrylamide gel electrophoresis showed that a thiol peroxidase-scavengase, Tps, was induced during oxygen exposure of an oxyR mutant. Tps is similar to 'atypical 2-cysteine peroxidases' such as scavengase p20 and it demonstrated catalytic activity against t-butyl hydroperoxide and H(2)O(2). A second gene, oim, encoding a putative membrane protein, was divergently transcribed from tps. Transcriptional analysis indicated that tps and oim were coordinately regulated by oxygen induction via an OxyR-independent mechanism. H(2)O(2) was a less potent inducer than oxygen exposure and in an oxyR mutant the mRNA levels were slightly reduced compared with the wild type. A null mutant of tps had increased sensitivity to killing by t-butyl hydroperoxide and oxygen but an oim mutant was similar to wild type. These data indicate that Tps is important for protection against some forms of oxidative stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides fragilis/genética , Estrés Oxidativo , Peroxidasa/metabolismo , Bacteroides fragilis/enzimología , Electroforesis en Gel Bidimensional , Eliminación de Gen , Mutagénesis , Peroxidasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
14.
ISME J ; 10(1): 158-69, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26046256

RESUMEN

Many reports have elucidated the mechanisms and consequences of bacterial quorum sensing (QS), a molecular communication system by which bacterial cells enumerate their cell density and organize collective behavior. In few cases, however, the numbers of bacteria exhibiting this collective behavior have been reported, either as a number concentration or a fraction of the whole. Not all cells in the population, for example, take on the collective phenotype. Thus, the specific attribution of the postulated benefit can remain obscure. This is partly due to our inability to independently assemble a defined quorum, for natural and most artificial systems the quorum itself is a consequence of the biological context (niche and signaling mechanisms). Here, we describe the intentional assembly of quantized quorums. These are made possible by independently engineering the autoinducer signal transduction cascade of Escherichia coli (E. coli) and the sensitivity of detector cells so that upon encountering a particular autoinducer level, a discretized sub-population of cells emerges with the desired phenotype. In our case, the emergent cells all express an equivalent amount of marker protein, DsRed, as an indicator of a specific QS-mediated activity. The process is robust, as detector cells are engineered to target both large and small quorums. The process takes about 6 h, irrespective of quorum level. We demonstrate sensitive detection of autoinducer-2 (AI-2) as an application stemming from quantized quorums. We then demonstrate sub-population partitioning in that AI-2-secreting cells can 'call' groups neighboring cells that 'travel' and establish a QS-mediated phenotype upon reaching the new locale.


Asunto(s)
Escherichia coli/fisiología , Percepción de Quorum , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Homoserina/análogos & derivados , Homoserina/metabolismo , Lactonas/metabolismo , Transducción de Señal
15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1100-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249707

RESUMEN

Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Šresolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two ß-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Šand contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR.


Asunto(s)
Proteínas Bacterianas/química , Clostridium acetobutylicum/química , Glicósido Hidrolasas/química , Pectinas/química , Proteínas Recombinantes de Fusión/química , Secuencias de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Clostridium acetobutylicum/genética , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glicósido Hidrolasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Electricidad Estática , Homología Estructural de Proteína , Especificidad por Sustrato
16.
Bioresour Technol ; 102(1): 312-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20655198

RESUMEN

Microbial fuel cells (MFCs) were used to monitor metabolism changes in Clostridium acetobutylicum fermentations. When MFCs were inoculated with C. acetobutylicum, they generated a unique voltage output pattern where two distinct voltage peaks occurred over a weeklong period. This result was markedly different to previously studied organisms which usually generate one sustained voltage peak. Analysis of the fermentation products indicated that the dual voltage peaks correlated with glucose metabolism. The first voltage peak correlated with acidogenic metabolism (acetate and butyrate production) and the second peak with solventogenic metabolism (acetone and butanol production). This demonstrates that MFCs can be applied as a novel tool to monitor the shift from acid production to solvent production in C. acetobutylicum.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Clostridium acetobutylicum/metabolismo , Acetatos/metabolismo , Ácidos/metabolismo , Butanoles/metabolismo , Butiratos/metabolismo , Electricidad , Fermentación , Glucosa/metabolismo , Solventes/metabolismo , Factores de Tiempo
17.
ChemMedChem ; 6(2): 309-20, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21246738

RESUMEN

2'-Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is a potential drug target for the treatment of malaria. We previously reported the discovery of 5'-tritylated analogues of deoxyuridine as selective inhibitors of this Plasmodium falciparum enzyme. Herein we report further structure-activity studies; in particular, variations of the 5'-trityl group, the introduction of various substituents at the 3'-position of deoxyuridine, and modifications of the base. Compounds were tested against both the enzyme and the parasite. Variations of the 5'-trityl group and of the 3'-substituent were well tolerated and yielded active compounds. However, there is a clear requirement for the uracil base for activity, because modifications of the uracil ring result in loss of enzyme inhibition and significant decreases in antiplasmodial action.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Nucleósidos/farmacología , Plasmodium falciparum/enzimología , Pirofosfatasas/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/química , Nucleósidos/química , Relación Estructura-Actividad
18.
J Med Chem ; 53(22): 8150-60, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21033671

RESUMEN

The current therapy for hepatitis C virus (HCV) infection has limited efficacy, in particular against the genotype 1 virus, and a range of side effects. In this context of high unmet medical need, more efficacious drugs targeting HCV nonstructural proteins are of interest. Here we describe 2'-deoxy-2'-spirocyclopropylcytidine (5) as a new inhibitor of the HCV NS5B RNA-dependent RNA polymerase, displaying an EC(50) of 7.3 µM measured in the Huh7-Rep cell line and no associated cytotoxicity (CC(50) > 98.4 µM). Computational results indicated high similarity between 5 and related HCV inhibiting nucleosides. A convenient synthesis was devised, facilitating synthesis of multigram quantities of 5. As the exposure measured after oral administration of 5 was found to be limited, the 3'-mono- and 3',5'-diisobutyryl ester prodrugs 20 and 23, respectively, were evaluated. The oral dosing of 23 led to substantially increased exposure to 5 in both rats and dogs.


Asunto(s)
Antivirales/síntesis química , Citidina/análogos & derivados , Hepacivirus/efectos de los fármacos , Profármacos/síntesis química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Compuestos de Espiro/síntesis química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular , Citidina/síntesis química , Citidina/química , Citidina/farmacología , Perros , Ésteres , Humanos , Masculino , Modelos Moleculares , Profármacos/farmacocinética , Profármacos/farmacología , Ratas , Ratas Sprague-Dawley , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Replicación Viral
19.
Biosens Bioelectron ; 24(10): 3144-7, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19359159

RESUMEN

Cathode design greatly affects microbial fuel cell (MFC) performance. Cathode contamination is inevitable in a single-chamber MFC yet it is impossible to study the magnitude of this effect in the single-chambered format. Therefore to study the effect of contamination at the cathode two-chamber MFCs must be used. The advantages of the two-chamber MFC design used in this study include: the assembled and filled fuel cell is autoclavable and the cathode can easily be moved from the submerged to air exposed position while maintaining sterility. This study was performed with the cathode in two positions: completely submerged in the catholyte and raised to a point where wicking action was used to coat the cathode with catholyte. When the cathode was submerged and the catholyte was inoculated with Bacillus megaterium, Shewanella oneidensis or Escherichia coli current generation was greatly decreased as compared to sterile. When the cathodes were raised, allowing contact with the catholyte by wicking, the current rose to levels comparable with sterile cathode MFCs. The reduced performance of submerged cathodes is most likely due to the microbial culture in the cathode greatly reducing the available oxygen for completion of the cathode reaction. This shows simple designs with low-cost materials can be used to mitigate effects of cathode contamination.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Bacillus megaterium/metabolismo , Electrodos , Electrólitos , Diseño de Equipo , Escherichia coli/metabolismo , Oxidación-Reducción , Shewanella/metabolismo
20.
J Med Chem ; 52(1): 219-23, 2009 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19055482

RESUMEN

4'-Azidocytidine 3 (R1479) has been previously discovered as a potent and selective inhibitor of HCV replication targeting the RNA-dependent RNA polymerase of hepatitis C virus, NS5B. Here we describe the synthesis and biological evaluation of several derivatives of 4'-azidocytidine by varying the substituents at the ribose 2' and 3'-positions. The most potent compound in this series is 4'-azidoarabinocytidine with an IC(50) of 0.17 microM in the genotype 1b subgenomic replicon system. The structure-activity relationships within this series of nucleoside analogues are discussed.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Citarabina/análogos & derivados , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/química , Línea Celular , Citarabina/síntesis química , Citarabina/química , Citarabina/farmacología , Concentración 50 Inhibidora , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA