Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154281

RESUMEN

BACKGROUND: A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS: L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS: L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS: Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.

2.
Int J Urol ; 30(1): 43-49, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594525

RESUMEN

OBJECTIVE: We report the impact of the COVID-19 pandemic on urological surgeries and hospital policies at two hospitals in Japan and Taiwan. METHODS: We retrospectively surveyed the number of surgeries every 3 months in the Urology Department of Kobe University Hospital (KUH), Kobe, Japan before (January 2019-March 2020) and after (April 2020-September 2021) the COVID-19 outbreak, and in the Urology Department of Shuang Ho Hospital, Taipei Medical University (SHH-TMU), Taiwan before (January 2021-March 2021) and after (April 2021-September 2021) the outbreak, and compared the averages and types of surgery. RESULTS: In Kobe, COVID-19 patients were stratified such that other regional hospitals gave priority to treating COVID-19 while KUH gave priority to treating non-COVID-19 patients. In KUH, the number of surgeries did not change significantly, 237.2 ± 29.6 versus 246.3 ± 20.8 (p = 0.453). In Taiwan COVID-19 patients increased sharply in May 2021, and teaching hospitals in Taiwan were obliged to provide 20% of their total beds for COVID-19 patients. At SHH-TMU, there was a 33.3% drop in the number of surgeries during April-June 2021 compared to the pre-pandemic average. However, no significant changes were observed, 423.4 ± 68.4 versus 373 ± 91.0 (p = 0.298), because of the subsequent success in controlling the COVID-19 infection. CONCLUSIONS: The comparison of infection control measures between the two countries revealed that while both KUH and SHH-TMU successfully maintained the number of surgeries, the reasons for this were different for each.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2 , Taiwán/epidemiología , Estudios Retrospectivos , Japón/epidemiología , Hospitales Universitarios
3.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563678

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is classified into core molecular subgroups (wingless activated (WNT), sonic hedgehog activated (SHH), Group 3 (G3), and Group 4 (G4)). In this study, we analyzed the tumor-infiltrating immune cells and cytokine profiles of 70 MB patients in Taiwan using transcriptome data. In parallel, immune cell composition in tumors from the SickKids cohort dataset was also analyzed to confirm the findings. The clinical cohort data showed the WNT and G4 MB patients had lower recurrence rates and better 5-year relapse-free survival (RFP) compared with the SHH and G3 MB patients, among the four subgroups of MB. We found tumor-infiltrating B cells (TIL-Bs) enriched in the G4 subgroups in the Taiwanese MB patients and the SickKids cohort dataset. In the G4 subgroups, the patients with a high level of TIL-Bs had better 5-year overall survival. Mast cells presented in G4 MB tumors were positively correlated with TIL-Bs. Higher levels of CXCL13, IL-36γ, and CCL27 were found compared to other subgroups or normal brains. These three cytokines, B cells and mast cells contributed to the unique immune microenvironment in G4 MB tumors. Therefore, B-cell enrichment is a G4-subgroup-specific immune signature and the presence of B cells may be an indicator of a better prognosis in G4 MB patients.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Recurrencia Local de Neoplasia , Transcriptoma , Microambiente Tumoral/genética
4.
Environ Toxicol ; 36(7): 1278-1287, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33734566

RESUMEN

AXL which is a chemosensitizer protein for breast cancer cells in response to epidermal growth factor receptor-tyrosine kinase inhibitor and suppresses tumor growth. The clinical information show nuclear factor I (NFI)-C and NFI-X expression correlate with AXL expression in breast cancer patients. Following, we establish serial deletions of AXL promoter to identify regions required for Adenovirus-5 early region 1A (E1A)-mediated AXL suppression. All of the NFI family members were extensively studied for their expression and functions in regulating AXL. Moreover, E1A post-transcriptionally downregulates AXL expression through NFI. NFI-C and NFI-X, not NFI-A and NFI-B, resulting in cell death in response to EGFR-TKI. Our finding suggests that NFI-C and NFI-X are crucial regulators for AXL and significantly correlated with poor survival of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Proteínas Tirosina Quinasas Receptoras , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Factores de Transcripción NFI , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Tirosina Quinasa del Receptor Axl
5.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681842

RESUMEN

Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas/terapia , Encéfalo , Vesículas Extracelulares , Técnicas de Transferencia de Gen , Células Madre Mesenquimatosas , Humanos , Terapia Molecular Dirigida
6.
Prostate ; 80(12): 986-992, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32557725

RESUMEN

BACKGROUND: Focal therapies for prostate cancer (PC) can reduce adverse events and do not lead to androgen-independent progression. Ultrasound could be used for cancer treatments if the repetition frequency is fitted to the purpose. We investigated the possible therapeutic effect of ultrasound irradiation on PC cells. MATERIALS AND METHODS: We irradiated two PC cell lines, androgen-dependent LNCaP and -independent PC-3 with ultrasound (3.0 W/cm2 , 3 MHz, irradiation time rate: 20%) for 2 minutes for 1 day or 3 consecutive days at a repetition frequency of 1, 10, or 100 Hz in vitro. Cell proliferation and apoptosis were determined after irradiation. RESULTS: Cell proliferation of PC-3 was significantly inhibited after 1 day (P < .0001) and 3 days (P < .0001) of 10 Hz ultrasound irradiation, and that of LNCaP after 1 day (P < .0001) and 3 days (P < .0001) of irradiation. LNCaP was more sensitive to ultrasound at both lower and higher cell density but PC-3 was only sensitive at a lower cell density (P < .01). Irradiation with 10 Hz ultrasound-induced significantly more PC-3 apoptotic cells than control (1 day, P = .0137; 3 days, P = .0386) rather than irradiation with 1 Hz. Apoptosis via caspase-3 was induced at 10 Hz in 1-day (P < .05) irradiation in both cell lines. CONCLUSIONS: Ultrasound irradiation with even 1 day of 10 Hz significantly inhibited cell proliferation in both LNCaP and PC-3, especially by the remarkable induction of apoptosis in vitro. Our study indicated that ultrasound irradiation can be a therapeutic option for PC and further studies in vivo will be undertaken.


Asunto(s)
Neoplasias de la Próstata/radioterapia , Terapia por Ultrasonido/métodos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/radioterapia
7.
Urol Int ; 104(5-6): 356-360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31801152

RESUMEN

PURPOSE: The aim of this study was to compare and investigate the efficacy of using the 5α-reductase inhibitor dutasteride after holmium laser enucleation of the prostate (HoLEP) to improve postoperative urination and surgery-related complications. METHODS: This is a retrospective observational study comparing patients who received or did not receive 5α-reductase inhibitors prior to HoLEP. Of a total of 270 patients, 40 received the 5α-reductase inhibitor dutasteride. We compared the factors including age, postoperative maximal flow rate (MFR; mL/s), postoperative prostate-specific antigen (PSA) (ng/mL), preoperative MFR (mL/s), preoperative PSA (ng/mL), prostate cancer (%), operative time (min), preoperative residual urine (mL), postoperative residual urine (mL), urinary incontinence (day 1; %), urinary incontinence (1 month; %), urinary incontinence (3 months; %), urethral catheter indwelling period (days), morcellation time (min), enucleation time (min), intraoperative complications (%), postoperative complications (%), prostate volume (mL), enucleated weight (g), and hospitalization period (days). RESULTS: Postoperative PSA (p = 0.0071), morcellation time (p = 0.0444), postoperative complications (p = 0.0350) and prostate volume (p = 0.0069), but not enucleated prostate weight (p = 0.8809), were significantly lower in the dutasteride group. Importantly, enucleation efficiency and morcellation efficiency did not show any significant difference between the dutasteride and the non-dutasteride groups. CONCLUSIONS: Use of a preoperative 5α-reductase inhibitor significantly correlated with surgery-related factors, with less morcellation time, fewer postoperative complications, and lower postoperative PSA. Surgeons performing HoLEP may wish to take these findings into account.


Asunto(s)
Inhibidores de 5-alfa-Reductasa/uso terapéutico , Dutasterida/uso terapéutico , Láseres de Estado Sólido/uso terapéutico , Complicaciones Posoperatorias/prevención & control , Prostatectomía/métodos , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/cirugía , Trastornos Urinarios/prevención & control , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Periodo Preoperatorio , Estudios Retrospectivos , Resultado del Tratamiento
8.
Sci Technol Adv Mater ; 21(1): 471-481, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32939172

RESUMEN

The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively. The saturation magnetization of the particles was measured as 60 emu g-1 with a superconducting quantum-interference-device magnetometer. The PSS content in the PSS-MNPs was 17% of the entire PSS-MNPs according to thermogravimetric analysis. Fourier-transform infrared spectra were recorded to detect the presence of SO3 - groups, which confirmed a successful PSS coating. The structural properties of the PSS-MNPs, including the crystalline lattice, composition and phases, were characterized with an X-ray powder diffractometer and 3D nanometer-scale Raman microspectrometer. MTT assay and Prussian-blue staining showed that, although PSS-MNPs caused no cytotoxicity in both NIH-3T3 mouse fibroblasts and SK-HEP1 human liver-cancer cells up to 1000 µg mL-1, SK-HEP1 cells exhibited significantly greater uptake of PSS-MNPs than NIH-3T3 cells. The low cytotoxicity and high biocompatibility of PSS-MNPs in human cancer cells demonstrated in the present work might have prospective applications for drug delivery.

9.
Hepatology ; 64(5): 1637-1651, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27530187

RESUMEN

Angiopoietin-like protein 1 (ANGPTL1) has been shown to act as a tumor suppressor by inhibiting angiogenesis, cancer invasion, and metastasis. However, little is known about the effects of ANGPTL1 on sorafenib resistance and cancer stem cell properties in hepatocellular carcinoma (HCC) and the mechanism underlying these effects. Here, we show that ANGPTL1 expression positively correlates with sorafenib sensitivity in HCC cells and human HCC tissues. ANGPTL1 significantly decreases epithelial-mesenchymal transition (EMT)-driven sorafenib resistance, cancer stemness, and tumor growth of HCC cells by repressing Slug expression. ANGPTL1 directly interacts with and inactivates MET receptor, which contributes to Slug suppression through inhibition of the extracellular receptor kinase/protein kinase B (ERK/AKT)-dependent early growth response protein 1 (Egr-1) pathway. ANGPTL1 expression inversely correlates with Slug expression, poor sorafenib responsiveness, and poor clinical outcomes in HCC patients. CONCLUSION: ANGPTL1 inhibits sorafenib resistance and cancer stemness in HCC cells by repressing EMT through inhibition of the MET receptor-AKT/ERK-Egr-1-Slug signaling cascade. ANGPTL1 may serve as a novel MET receptor inhibitor for advanced HCC therapy. (Hepatology 2016;64:1637-1651).


Asunto(s)
Angiopoyetinas/fisiología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Resistencia a Antineoplásicos , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Proteínas Proto-Oncogénicas c-met/fisiología , Proteína 1 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas , Niacinamida/uso terapéutico , Sorafenib
10.
Int J Urol ; 23(9): 734-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27397852

RESUMEN

Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells.


Asunto(s)
Exosomas , Neoplasias de la Próstata/patología , Microambiente Tumoral , Progresión de la Enfermedad , Humanos , Masculino , Metástasis de la Neoplasia
11.
BMC Urol ; 15: 113, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26576637

RESUMEN

BACKGROUND: Both benign prostatic hyperplasia (BPH) and Type-1 diabetes mellitus (T1DM) share similar epidemiologic features and are all associated with the insulin-like growth factor (IGF)-mediated hormonal imbalance. The purpose of this study is to understand whether exercise (EX) could alleviate DM and DM + BPH. METHODS: Sprague-Dawley rats were divided into eight groups: normal control, EX, BPH, BPH + EX, DM, DM + EX, BPH + DM, and BPH + DM + EX. T1DM was induced by intraperitoneal (ip) injection of streptozotocin (65 mg/kg) in Week 2, and BPH was induced by successive ip injections of Sustanon® (testosterone, 3.5 mg/head) plus estradiol (0.1 mg/head) from Week 3 to Week 9. Treadmill exercise training (20 m/min, 60 min per time) was performed three times per week for 6 weeks. RESULTS: In BPH + EX, EX maintained at a constant body weight (BW); and suppressed stromal layer thickening, collagen deposition, blood glucose (BG), levels of testosterone (Ts), 5α-reductase(5αRd), dihydrotestosterone (DHT), androgen receptor (AR), serum hydrogen peroxide, TBARs, and interleukin-6 (IL-6). EX recovered testes size and substantially increased nitric oxide (NO) levels. In DM + EX group, EX decreased BW, PW, nuclear proliferation, inflammatory cell aggregation, collagen deposition, and BG. As contrast, EX upregulated insulin, IGF, Ts, NO, 5αRd, AR, and DHT, and substantially reduced PSA. In BPH + DM + EX, EX maintained BW at a subnormal level, slightly suppressed prostate stromal inflammation, collagen deposition, and BG, moderately restored sIn and IGF. Although failed to suppress Ts, EX highly upregulated 5αRd and suppressed DHT and AR, together with highly upregulated NO resulting in substantially reduced PSA. CONCLUSION: EX, by remodeling androgen and NO expressions, can effectively alleviate BPH, DM, and BPH + DM.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Terapia por Ejercicio , Hiperplasia Prostática/complicaciones , Hiperplasia Prostática/terapia , Andrógenos/sangre , Animales , Glucemia/metabolismo , Peso Corporal , Diabetes Mellitus Tipo 1/sangre , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/sangre , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Lípidos/sangre , Masculino , Tamaño de los Órganos , Próstata/patología , Hiperplasia Prostática/sangre , Hiperplasia Prostática/patología , Ratas Sprague-Dawley , Testículo/patología
12.
Sci Rep ; 14(1): 25501, 2024 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-39462108

RESUMEN

Bladder cancer treatments are highly aggressive and have strong side effects. Safer and more effective treatments are needed. In this study, Dibenzolium (DIB), a potent NADPH oxidase inhibitor, was evaluated for its anti-tumor effects. KK-47 (non-invasive), T24 and 5637 (invasive) cells were used in experiments. Cell proliferation, apoptosis and wound healing assays and western blotting were conducted. In addition, DIB was intratumorally administered to mice bearing KK-47, T24 and 5637 tumors, and tumor size and weight were observed over time. After removing tumors, immunohistochemistry (IHC) staining was conducted. Cell proliferation was significantly suppressed in all cell lines, and apoptotic cells increased in the KK-47 and T24 cell lines after DIB. Wound healing was suppressed in all cell lines by DIB. In KK-47 and T24, DIB increased the protein expression of the epithelial marker E-cadherin. In vivo, DIB safely suppressed tumor growth in all cell lines-bearing mice. Cleaved-Caspase-3 and E-cadherin expression increased in KK-47 and T24 tumors after DIB. In conclusion, DIB inhibited tumor growth by inducing apoptosis through the Caspase-3 pathway and reduced migration and invasion by suppressing epithelial mesenchymal transition (EMT) in bladder cancer similarly shown as our previous study of prostate cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Vejiga Urinaria , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Apoptosis/efectos de los fármacos , Animales , Humanos , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Ratones Desnudos
13.
Neoplasia ; 58: 101075, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39437704

RESUMEN

BACKGROUND: Atypical teratoid rhabdoid tumor (ATRT) is an aggressive brain tumor that mainly affects young children. Our recent study reported a promising therapeutic strategy to trigger DNA damage, impede homologous recombination repair, and induce apoptosis in ATRT cells by targeting ribonucleotide reductase regulatory subunit M2 (RRM2). COH29, an inhibitor of RRM2, effectively reduced tumor growth and prolonged survival in vivo. Herein, we explored the underlying mechanisms controlling these functions to improve the clinical applicability of COH29 in ATRT. METHODS: Molecular profiling of ATRT patients and COH29-treated cells was analyzed to identify the specific signaling pathways, followed by validation using a knockdown system, flow cytometry, q-PCR, and western blot. RESULTS: Elevated E2F1 and its signaling pathway were correlated with poor prognosis. RRM2 inhibition induced DNA damage and activated ATM, which reduced Rb phosphorylation to promote Rb-E2F1 interaction and hindered E2F1 functions. E2F1 activity suppression led to decreased E2F1-dependent target expressions, causing cell cycle arrest in the G1 phase, decreased S phase cells, and blocked DNA damage repair. CONCLUSION: Our study highlights the role of ATM/Rb/E2F1 pathway in controlling cell cycle arrest and apoptosis in response to RRM2 inhibition-induced DNA damage. This provides insight into the therapeutic benefits of COH29 and suggests targeting this pathway as a potential treatment for ATRT.

14.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689348

RESUMEN

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Asunto(s)
Proteínas Hedgehog , Meduloblastoma , Células Madre Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástasis de la Neoplasia , Fenotipo , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Masculino , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Pronóstico , Movimiento Celular
15.
J Microbiol Immunol Infect ; 56(1): 93-103, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36068121

RESUMEN

BACKGROUND: Hypermucoviscous (HMV) Klebsiella pneumoniae produces large amounts of capsular polysaccharides, leading to high mortality. Since extended spectrum beta-lactamase (ESBL)-producing HMV K. pneumoniae strains have increased in Japan, we investigated and compared the antimicrobial susceptibilities and genetic characteristics of HMV and non-HMV ESBL-producing K. pneumoniae. METHODS: We investigated 291 ESBL-producing K. pneumoniae collected between 2012 and 2018, and in them 54 HMV strains were identified and comparable 53 non-HMV strains were selected. Then, ESBL gene detection, plasmid replicon typing, and virulence gene detection were done by PCR amplification. RESULTS: Almost all of the HMV K. pneumoniae strains possessed uge (98.1%), wabG (96.3%), rmpA (94.4%), iucA (79.6%), fimH (70.4%), iroB (70.4%), and peg-344 (70.4%). These genes were found less frequently in non-HMV strains (uge 20.8%, wabG 83.0%, rmpA 7.5%, iucA 3.8%, fimH 9.4%, iroB 5.7%, and peg-344 1.9%). K2 capsule type (40.7%) was most common in HMV strains. HMV strains showed higher resistance to cefepime (p = 0.001) and piperacillin/tazobactam (p = 0.005) than non-HMV strains. CTX-M-15 (75.9%, 60.4%) was the dominant ESBL type in both HMV and non-HMV strains, and the most common plasmid replicon type was IncFII (52.1%) in CTX-M-15-producing strains. CONCLUSIONS: We found that HMV strains had more virulence genes and showed higher resistance to antibiotics than non-HMV strains. The most common capsule type was K2. CTX-M-15 was the most common type of ESBL gene in both HMV and non-HMV strains in Japan. The FII plasmid might be related to the spread of CTX-M-15 among K. pneumoniae strains.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Virulencia/genética , Japón , Antibacterianos/farmacología
16.
Int J Biol Sci ; 19(3): 760-771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778124

RESUMEN

Background: Metastatic prostate cancer (PCa) predicts a poor prognosis and lower likelihood of survival. Osteoblasts (OBs) are known to be responsible for the synthesis and mineralization of bone, although it is unclear as to whether PCa in the prostate gland cooperates with OBs in bone to promote PCa malignant transformation. We aimed to elucidate how primary PCa cells cooperate with distal OBs and contribute to the vicious cycle that leads to metastatic PCa. Methods: N-cadherin, E-cadherin, and Twist protein expression were measured by Western blot. Twist translocation into the nucleus was detected by the immunofluorescence (IF) assay. Enzyme-linked immunosorbent assay (ELISA) detected protein levels in human serum samples. Levels of candidate protein expression were examined by the human cytokine array. Prostate tumor growth and metastasis were analyzed by orthotopic and metastatic prostate cancer models, respectively. Immunohistochemistry (IHC) staining was used to observe ADAM metallopeptidase domain 9 (ADAM9) and WNT1 inducible signaling pathway protein 1 (WISP-1) expression in tissue. Results: Our in vitro and in vivo analyses have now discovered that primary PCa expressing ADAM9 protein enables the transformation of OBs into PCa-associated osteoblasts (PCa-OBs), inducing WISP-1 secretion from PCa-OBs in the bone microenvironment. The upregulation of WISP-1 in bone provided feedback to primary PCa and promoted PCa cell aggressiveness via epithelial-mesenchymal transition (EMT) activity. Elevated levels of WISP-1 expression were detected in the serum of patients with PCa. ADAM9 levels were overexpressed in tumor tissue from PCa patients; ADAM9 blockade interrupted OB-induced release of WISP-1 and also suppressed primary tumor growth and distal metastasis in orthotopic PCa mouse models. Conclusion: Our study suggests that the ADAM9/WISP-1 axis assists with metastatic PCa progression. Thus, targeting the ADAM9/WISP-1 axis may help to prevent the malignant phenotypes of PCa cells.


Asunto(s)
Proteínas ADAM , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Proteínas ADAM/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Osteoblastos/metabolismo , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral , Regulación hacia Arriba
17.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124207

RESUMEN

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Animales , Preescolar , Humanos , Ratones , Apoptosis , Neoplasias del Sistema Nervioso Central/metabolismo , Reparación del ADN , Inhibidores Enzimáticos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
18.
Mol Pharm ; 9(5): 1396-408, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22480282

RESUMEN

Cell-based carriers were recently exploited as a tumor-targeting tool to improve systemic delivery of oncolytic viruses for cancer therapy. However, the slow clearance of carrier cells from normal organs indicates the need for a controllable system which allows viral delivery only when the carrier cells reach the tumor site. In this study, we sought to develop a pharmaceutically inducible cell-based oncolytic adenovirus delivery strategy for effective targeting and treatment of renal cell carcinoma (RCC), which is one of the most malignant tumor types with an unfavorable prognosis. Herein, we demonstrated the intrinsic tumor homing property of human bone marrow-derived mesenchymal stem cells (hMSCs) to specifically localize primary and metastatic RCC tumors after systemic administration in a clinically relevant orthotopic animal model. The platelet derived growth factor AA (PDGF-AA) secreted from RCC was identified as a chemoattractant responsible for the recruitment of hMSCs. Like endogenous osteocalcin whose barely detectable level of expression was dramatically induced by vitamin D(3), the silenced replication of human osteocalcin promoter-directed Ad-hOC-E1 oncolytic adenoviruses loaded in hMSCs was rapidly activated, and the released oncolytic adenoviruses sequentially killed cocultured RCC cells upon vitamin D(3) exposure. Moreover, the systemic treatment of RCC tumor-bearing mice with hMSC cell carriers loaded with Ad-hOC-E1 had very limited effects on tumor growth, but the loaded hMSCs combined with vitamin D(3) treatment induced effective viral delivery to RCC tumors and significant tumor regression. Therapeutic effects of hMSC-based Ad-hOC-E1 delivery were confirmed to be significantly greater than those of injection of carrier-free Ad-hOC-E1. Our results presented the first preclinical demonstration of a novel controllable cell-based gene delivery strategy that combines the advantages of tumor tropism and vitamin D(3)-regulatable human osteocalcin promoter-directed gene expression of hMSCs to improve oncolytic virotherapy for advanced RCC.


Asunto(s)
Adenoviridae/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/terapia , Colecalciferol/farmacología , Colecalciferol/uso terapéutico , Células Madre Mesenquimatosas/citología , Animales , Carcinoma de Células Renales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Viroterapia Oncolítica/métodos , Osteocalcina/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Chin J Physiol ; 55(6): 390-7, 2012 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-23286446

RESUMEN

Recent evidence has demonstrated that detection of changes in the levels of urinary vascular endothelial growth factor (VEGF) and tissue a disintegrin and metalloproteinase 9 (ADAM9) is effective in determining prostate cancer progression. To evaluate the combined application of VEGF and ADAM9 as early progression markers of lethal phenotypic cancer, quantification of urinary VEGF and tissue ADAM9 expression was studied in patients with late stage prostate cancer. Tissue biopsies were collected during palliative transurethral resection of prostate (TURP) surgery, and urine samples were collected before hormone therapy and 3, 6 and 12 months post-TURP. We observed a nearly 100% correlation between increasing urinary VEGF levels over time and prostate cancer progression, but no correlation was observed when comparing urinary VEGF concentrations at a single time point and cancer progression. In addition, we also observed correlation of increasing ADAM9 nuclear positive staining and lethal phenotypic transition. Statistical analysis revealed that both the increase in urinary VEGF level and the presence of the tissue ADAM9 nuclear staining were significantly correlated with the risk of patients with relapse prostate cancer (P < 0.05). Thus, we suggest that combination of detection of changes in urinary VEGF and tissue staining of ADAM9 may be accurate for predicting the mortality of patients with prostate cancer during hormone therapy.


Asunto(s)
Recurrencia Local de Neoplasia , Factor A de Crecimiento Endotelial Vascular , Biopsia , Progresión de la Enfermedad , Humanos , Masculino , Neoplasias de la Próstata/metabolismo
20.
Front Biosci (Landmark Ed) ; 27(9): 256, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224011

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (PCa; CRPC) has a poor response to androgen deprivation therapy and is considered an incurable disease. MicroRNA (miR)-lethal 7c (let-7c) was implied to be a tumor suppressor in PCa, and treatment with exogenous let-7c targets both cancer cells and their associated mesenchymal stem cells (MSCs) to prevent CRPC progression and metastasis. Exosomes are nanometer-sized membrane-bound vesicles which have an absolute predominance in biocompatibility for drug delivery and gene therapy by mediating cell-to-cell communication. By utilizing the intrinsic tumor-targeting property of MSCs, this study aimed to investigate the feasibility of MSC-derived exosomes as an exogenous miR delivery system to target CRPC, using miR let-7c as an example. METHODS: Bioinformatics analysis was performed to observe miR-let-7c expression in clinical samples by utilizing the GEO database. MSC-derived exosomes were collected from a human bone marrow-derived MSC cell line after cell transfection with either a pre-miR negative control or pre-miR-let-7c, and further characterized through nanoparticle tracking analysis and Western blotting. miR-let-7c expression was determined using RT-qPCR, and the phenotypic effects of both naked and MSC-exosome-encapsulated let-7c on CRPC cells (PC3 and CWR22Rv1) were determined by WST-1 cell proliferation assay and wound healing migration assay. RESULTS: miR-let-7c was downregulated in metastatic PCa and high grade group patients. miR-let-7c expression was confirmed to be downregulated in PCa cell lines, with massively decreased in most metastatic CRPC-like cells. Exogenous miR-let-7c can be successfully packaged into MSC exosomes. Treatment with either naked or MSC-exosome-encapsulated miR-let-7c resulted in significant reductions in cell proliferation and migration in CRPC-like PC3 and CWR22Rv1 cells. CONCLUSIONS: MSC-derived exosomes could serve as a therapeutic let-7c delivery system to target CRPC.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs/genética , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/metabolismo , Andrógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Exosomas/genética , Exosomas/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA