Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Sci ; 114(4): 1365-1377, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36519789

RESUMEN

There is increasing evidence that hexokinase is involved in cell proliferation and migration. However, the function of the hexokinase domain containing protein-1 (HKDC1) in gastric cancer (GC) remains unclear. Immunohistochemistry analysis and big data mining were used to evaluate the correlation between HKDC1 expression and clinical features in GC. In addition, the biological function and molecular mechanism of HKDC1 in GC were studied by in vitro and in vivo assays. Our study indicated that HKDC1 expression was upregulated in GC tissues compared with adjacent nontumor tissues. High expression of HKDC1 was associated with worse prognosis. Functional experiments demonstrated that HKDC1 upregulation promoted glycolysis, cell proliferation, and tumorigenesis. In addition, HKDC1 could enhance GC invasion and metastasis by inducing epithelial-mesenchymal transition (EMT). Abrogation of HKDC1 could effectively attenuate its oncogenic and metastatic function. Moreover, HKDC1 promoted GC proliferation and migration in vivo. HKDC1 overexpression conferred chemoresistance to cisplatin, oxaliplatin, and 5-fluorouracil (5-Fu) onto GC cells. Furthermore, nuclear factor kappa-B (NF-κB) inhibitor PS-341 could attenuate tumorigenesis, metastasis, and drug resistance ability induced by HKDC1 overexpression in GC cells. Our results highlight a critical role of HKDC1 in promoting glycolysis, tumorigenesis, and EMT of GC cells via activating the NF-κB pathway. In addition, HKDC1-mediated drug resistance was associated with DNA damage repair, which further activated NF-κB signaling. HKDC1 upregulation may be used as a potential indicator for choosing an effective chemotherapy regimen for GC patients undergoing chemotherapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , FN-kappa B/metabolismo , Regulación hacia Arriba , Resistencia a Antineoplásicos/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Fluorouracilo/farmacología , Progresión de la Enfermedad , Carcinogénesis/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
2.
Neoplasma ; 68(4): 683-691, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33618518

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and currently lacks effective treatment strategies. The present study revealed that deoxyribonuclease 1 like 3 (DNase1L3) expression levels were significantly downregulated in numerous types of gastrointestinal cancer, and especially in HCC. Tissue microarrays were further used to illustrate that DNase1L3 expression levels were frequently downregulated in HCC tissues compared with normal liver tissues. In addition, DNase1L3 expression levels were identified to be significantly associated with tumor size (p=0.0028), tumor thrombus formation (p<0.01), and a poorer overall survival (p=0.005) and disease-free survival (p=0.006) of HCC. Gene Ontology functional term enrichment analysis of biological processes discovered that DNase1L3 was significantly associated with complement activation. Further studies demonstrated that the ectopic expression of DNase1L3 suppressed cell growth and inhibited the PI3K/AKT signaling pathway activation following C3a receptor agonist treatment. In conclusion, the findings of the present study suggested, for the first time, that DNase1L3 may serve as a biomarker for the prognosis of patients with HCC, and may suppress HCC growth via inhibiting the PI3K/AKT signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Proteínas del Sistema Complemento/fisiología , Endodesoxirribonucleasas , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Endodesoxirribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Brain Behav Immun ; 66: 289-301, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28736035

RESUMEN

Propane-2-sulfonic acid octadec-9-enyl-amide (N15), an analogue of oleoylethanolamide (OEA), is a novel PPARα/γ dual agonist. Our previous studies verified the positive effects of OEA on the acute and delayed stages of cerebral ischemia. However, it is not clear whether N15 is effective against ischemic cerebral injury. In the present study, male Kunming mice were subjected to middle cerebral artery occlusion (MCAO). To evaluate its preventive effects, N15 (50, 100 or 200mg/kg, ip) was administered for 3days before ischemia. To evaluate its therapeutic effects, N15 (200mg/kg, ip) was administered 1h before reperfusion or 0, 1, 2 or 4h after reperfusion. Neurological deficit scores, infarct volume and the degree of brain oedema were determined at 24h after reperfusion. Blood brain barrier (BBB) disruption was evaluated by Evans blue (EB) and FITC-dextran leakages at 6h after reperfusion. The activation/inflammatory responses of microglia/macrophages were detected using immunohistochemistry and western blot. N15 pretreatment improved neurological dysfunction, reduced infarct volume and alleviated brain oedema in a dose-dependent manner; the most effective dose was 200mg/kg. The therapeutic time window was within 2h after reperfusion. N15 treatment preserved the BBB integrity and suppressed the activation of microglia/macrophages. N15 inhibited inflammatory cytokine expression not only in MCAO mice but also in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Additionally, N15 markedly decreased the phosphorylation levels of NF-κBp65, STAT3, and ERK1/2 both in vivo and in vitro. Furthermore, the PPARα antagonist MK886 or PPARγ antagonist T0070907 respectively partly abolished the anti-inflammatory effects of N15 in vitro. Our findings demonstrated that N15 can exert neuroprotective effects against cerebral ischemic insult. Moreover, the neuroprotective effects of N15 on cerebral ischemia may be attributed to its anti-inflammatory properties, at least in part, by enhancing PPARα/γ dual signaling and inhibiting the activation of the NF-κB, STAT3, and ERK1/2 signaling pathways. These findings suggest that N15 may be a potential therapeutic choice for the prevention and treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Encefalitis/prevención & control , Fármacos Neuroprotectores/administración & dosificación , PPAR alfa/agonistas , PPAR gamma/agonistas , Ácidos Sulfónicos/administración & dosificación , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Encefalitis/complicaciones , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo
4.
J Exp Clin Cancer Res ; 43(1): 106, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589927

RESUMEN

INTRODUCTION: Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS: Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS: Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION: HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Gástricas , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba , Evasión Inmune , Quimioterapia Combinada , Proteínas del Choque Térmico HSP110/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
5.
Oncogenesis ; 12(1): 50, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914722

RESUMEN

Although many studies have compared tumor fibroblasts (T-Fbs) and nontumor fibroblasts (N-Fbs), less is understood about the stromal contribution of metastatic lymph node fibroblasts (LN-Fbs) to the evolving microenvironment. Here, we explored the characteristics of LN-Fbs in esophageal squamous cell carcinoma (ESCC) and the interactions between fibroblasts and ESCC tumor cells in metastatic lymph nodes. Fibroblasts were isolated from tumor, nontumor and metastatic lymph node tissues from different patients with ESCC. Transcriptome sequencing was performed on the fibroblasts. Tumor growth and drug-resistance assays were carried out, and characteristics of T-Fbs, N-Fbs and LN-Fbs were determined. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assay the culture medium of fibroblasts. The results demonstrated that fibroblasts derived from different tissues had different characteristics. Coculture with LN-Fbs conditioned medium inhibited ESCC tumor cell growth and induced chemoresistance in ESCC cells. LN-Fbs induced chemoresistance to cisplatin in ESCC cells by secreting PI16. Coculture with LN-Fbs conditioned medium decreased cisplatin-induced apoptosis in ESCC cells by regulating the p38 and JNK cell signaling pathways. Survival analyses showed that patients with high PI16 expression in Fbs of lymph nodes exhibited worse overall survival. We also examined PI16 expression in interstitial tissues in ESCC tumor samples of patients receiving platinum-based therapy postsurgery and found that high PI16 expression in tumor interstitial tissues was an independent prognostic factor for ESCC patients. In addition, an in vivo assay demonstrated that PI16 knockdown increased the sensitivity of ESCC cells to cisplatin. Our results suggest that fibroblasts in metastatic lymph nodes decrease apoptosis of ESCC cells via PI16, thereby providing a cisplatin-resistance niche and supporting ESCC tumor cells to survive in metastatic lymph nodes. PI16 is also a potential target for effectively blocking the chemoresistance niche signaling circuit in response to cisplatin.

6.
Mol Oncol ; 14(12): 3184-3197, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064899

RESUMEN

Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related mortality worldwide. Our previous study identified a novel alternative splicing variant of prenyl diphosphate synthase subunit 2 (PDSS2) in HCC characterized by a deletion of exon 2, named PDSS2-Del2, which is devoid of the tumor-suppressive function of full-length PDSS2 (PDSS2-FL). To better understand the clinical significance of PDSS2-Del2, we performed a BaseScope™ assay on an HCC tissue microarray and found that positive staining for PDSS2-Del2 predicted a worse overall survival in patients with HCC (P = 0.02). PDSS2-Del2 levels correlated significantly with microvessel counts in HCC tumor tissues. Importantly, PDSS2-Del2 overexpression functionally promoted HCC metastasis, as demonstrated by in vitro and in vivo migration assays. In vivo assays also demonstrated that PDSS2-Del2 increased angiogenesis in xenografts. Furthermore, we discovered that elevated PDSS2-Del2 expression in HCC tumor cells decreased fumarate levels and activated the canonical nuclear factor-κB pathway. The epithelial-to-mesenchymal transition (EMT) and WNT/ß-catenin signaling pathways were also activated by overexpression. Dimethyl fumarate (DMF), a fumaric acid ester, effectively reduced the metastasis induced by PDSS2-Del2 as observed with in vivo spleen-liver metastasis animal experiments. DMF is a prescribed oral therapy for multiple sclerosis and it might be a potential treatment for metastasis of patients with HCC. Early clinical trials are needed to validate its potential in this context.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Neovascularización Patológica/metabolismo , Adulto , Anciano , Animales , Carcinoma Hepatocelular/irrigación sanguínea , Línea Celular Tumoral , Movimiento Celular , Suplementos Dietéticos , Transición Epitelial-Mesenquimal , Femenino , Fumaratos/farmacología , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Microvasos/patología , Persona de Mediana Edad , Metástasis de la Neoplasia , Análisis de Supervivencia , Vía de Señalización Wnt , Adulto Joven
7.
Oncogenesis ; 9(8): 75, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839439

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common malignant cancer worldwide. Despite recent improvements in surgical techniques and adjuvant therapies, the prognosis of patients with advanced ESCC remains poor. Resistance to chemoradiotherapy (CRT) remains a major cause of treatment failure for advanced ESCC patients. Here, we report that NRIP3 (nuclear receptor interacting protein 3) promotes ESCC tumor cell growth and resistance to CRT in ESCC cells by increasing and binding to DDI1 (DNA-damage inducible 1 homolog 1) and RTF2 (homologous to Schizosaccharomyces pombe Rtf2), and accelerating the removal of RTF2, which is a key determinant for the ability of cells to manage replication stress. In addition, we found that NRIP3 could increase DDI1 expression via PPARα. The NRIP3-PPARα-DDI1-RTF2 axis represents a protective molecular pathway in ESCC cells that mediates resistance to replication stress signals induced by chemoradiotherapy. In addition, elevated NRIP3 is associated with the poor clinical outcome of ESCC patients receiving radiotherapy and/or cisplatin-based chemotherapy. Our study therefore reveals that NRIP3 is a prognostic factor in ESCC and could have some predictive value to select patients who benefit from CRT treatment. A common mechanism that protects ESCC tumor cells from DNA damage induced by CRT is also revealed in this study.

8.
Oncogene ; 39(32): 5441-5454, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32587398

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a malignant disease and is a common cause of death in China. By performing an integrative study investigating public databases and clinical samples collected by our group, we found that HOXC10 (homeobox C10) is upregulated in ESCC tumor tissues compared with nontumor tissues and that the upregulation of HOXC10 is correlated with the poor prognosis of patients with ESCC. The enforced expression of HOXC10 promoted ESCC cell proliferation in vitro and in vivo. Our study revealed that HOXC10 could bind the promoter region of human Erb-b2 receptor tyrosine kinase 3 (ERBB3/HER3) and activate the PI3K/AKT pathway. In addition, by immunoprecipitation and mass spectrometry analysis, we found that HOXC10 could bind X-ray repair cross complementing 6 (Ku70) and accelerate the DNA repair mechanism via the nonhomologous end-joining (NHEJ) pathway. We further evaluated HOXC10 expression in ESCC patients receiving adjuvant radiotherapy or platinum-based chemotherapy. The results demonstrate that HOXC10 upregulation predicts the poor prognosis of ESCC patients receiving adjuvant radiotherapy or chemotherapy. Our study reveals that HOXC10 upregulation reflects the poor prognosis of ESCC patients and directs the selection of postoperative therapy regimens.


Asunto(s)
Quimioradioterapia/métodos , Carcinoma de Células Escamosas de Esófago/genética , Proteínas de Homeodominio/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/radioterapia , Femenino , Humanos , Masculino , Pronóstico , Regulación hacia Arriba
9.
Cancer Res ; 80(24): 5583-5596, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33093168

RESUMEN

T-cell exhaustion was initially identified in chronic infection in mice and was subsequently described in humans with cancer. Although the distinct signature of exhausted T (TEX) cells in cancer has been well investigated, the molecular mechanism of T-cell exhaustion in cancer is not fully understood. Using single-cell RNA sequencing, we report here that TEX cells in esophageal cancer are more heterogeneous than previously clarified. Sprouty RTK signaling antagonist 1 (SPRY1) was notably enriched in two subsets of exhausted CD8+ T cells. When overexpressed, SPRY1 impaired T-cell activation by interacting with CBL, a negative regulator of ZAP-70 tyrosine phosphorylation. Data from the Tumor Immune Estimation Resource revealed a strong correlation between FGF2 and SPRY1 expression in esophageal cancer. High expression of FGF2 was evident in fibroblasts from esophageal cancer tissue and correlated with poor overall survival. In vitro administration of FGF2 significantly upregulated expression of SPRY1 in CD8+ T cells and attenuated T-cell receptor-triggered CD8+ T-cell activation. A mouse tumor model confirmed that overexpression of FGF2 in fibroblasts significantly upregulated SPRY1 expression in TEX cells, impaired T-cell cytotoxic activity, and promoted tumor growth. Thus, these findings identify FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells in esophageal cancer. SIGNIFICANCE: These findings reveal FGF2 as an important regulator of SPRY1 expression involved in establishing the dysfunctional state of CD8+ T cells and suggest that inhibition of FGF2 has potential clinical value in ESCC. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5583/F1.large.jpg.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos T CD8-positivos/inmunología , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Esofágicas/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Neoplasias Esofágicas/patología , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Células Jurkat , Activación de Linfocitos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica v-cbl/genética , Proteína Oncogénica v-cbl/metabolismo , Fosfoproteínas/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Transfección
10.
Front Pharmacol ; 9: 389, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740317

RESUMEN

The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

11.
Biochem Pharmacol ; 94(4): 270-81, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25748831

RESUMEN

Oleoylethanolamide (OEA) has been shown to have neuroprotective effects after acute cerebral ischemic injury. The aim of this study was to investigate the effects of chronic OEA treatment on ischemia-induced spatial cognitive impairments, electrophysiology behavior and hippocampal neurogenesis. Daily treatments of 30 mg/kg OEA significantly ameliorated spatial cognitive deficits and attenuated the inhibition of long-term potentiation (LTP) in the middle cerebral artery occlusion (MCAO) rat model. Moreover, OEA administration improved cognitive function in a manner associated with enhanced neurogenesis in the hippocampus. Further study demonstrated that treatment with OEA markedly increased the expressions of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptors α (PPARα). Our data suggest that chronic OEA treatment can exert functional recovery of cognitive impairments and neuroprotective effects against cerebral ischemic insult in rats via triggering of neurogenesis in the hippocampus, which supports the therapeutic use of OEA for cerebral ischemia.


Asunto(s)
Trastornos del Conocimiento/psicología , Hipocampo/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Neurogénesis , Ácidos Oléicos/farmacología , Aprendizaje Espacial/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastornos del Conocimiento/tratamiento farmacológico , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiopatología , Endocannabinoides , Hipocampo/patología , Hipocampo/fisiopatología , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Ataque Isquémico Transitorio/psicología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ácidos Oléicos/uso terapéutico , PPAR alfa/metabolismo , Ratas Sprague-Dawley
12.
Oxid Med Cell Longev ; 2014: 154295, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24829618

RESUMEN

Hyperlipidemia and many other metabolic diseases are related to oxidative stress. Centella asiatica is a traditional Chinese medicine whose antioxidant effect in vitro has been reported. We are interested in whether it possesses this effect in vivo and hence modulates lipid metabolism. Therefore, experiments were carried out on mice and golden hamsters regarding its antioxidant and hypolipidemic effect. We observed that a fraction (CAF3) of the ethanol extract (CAE) of Centella asiatica had a cholesterol decrease of 79% and a triglyceride decrease of 95% in acute mice model, so CAF3 was further investigated in high-fat-fed hamster model. It was shown that CAF3 increased SOD and GSH-Px activities and decreased MDA level, and it also improved TC, TG, LDL-C, HDL-C, AST, and ALT levels. L-CAT and SR-BI gene expression in hamsters were increased. Taken together, our data suggest that the CAF3 fraction of Centella asiatica has antioxidant and hypolipidemic properties.


Asunto(s)
Centella/química , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Triterpenos/farmacología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Peso Corporal/efectos de los fármacos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Centella/metabolismo , Colesterol/sangre , Cricetinae , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Medicina Tradicional China , Ratones , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Extractos Vegetales , Superóxido Dismutasa/metabolismo , Triglicéridos/sangre , Triterpenos/química , Triterpenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA