Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758958

RESUMEN

A novel way to enhance modulation performance is through the design of a hybrid plasmonic optical modulator that integrates multi-layer graphene and TiO2on silicon waveguides. In this article, a design is presented of a proposed modulator based on the use of the two-dimensional finite difference eigenmode solver, the three-dimensional eigenmode expansion solver, and the CHARGE solver. Leveraging inherent graphene properties and utilizing the subwavelength confinement capabilities of hybrid plasmonic waveguides (HPWs), we achieved a modulator design that is both compact and highly efficient. The electrical bandwidthf3dBis at 460.42 GHz and it reduces energy consumption to 12.17 fJ/bit with a modulator that functions at a wavelength of 1.55µm. According to our simulation results, our innovation was the optimization of the third dielectric layer's thickness, setting the stage to achieve greater modulation depths. This synergy between graphene and HPWs not only augments subwavelength confinement, but also optimizes light-graphene interaction, culminating in a markedly enhanced modulation efficiency. As a result, our modulator presents a high extinction ratio and minimized insertion loss. Furthermore, it exhibits polarization insensitivity and a greater bandwidth. Our work sets a new benchmark in optical communication systems, emphasizing the potential for the next generation of chip-scale with high-efficiency optical modulators that significantly outpace conventional graphene-based designs.

2.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065830

RESUMEN

Thailand's hospitals face overcrowding, particularly with non-communicable disease (NCD) patients, due to a doctor shortage and an aging population. Most literature showed implementation merely on web or mobile application to teleconsult with physicians. Instead, in this work, we developed and implemented a telemedicine health kiosk system embedded with non-invasive biosensors and time-series predictors to improve NCD indicators over an eight-month period. Two cohorts were randomly selected: a control group with usual care and a telemedicine-using group. The telemedicine-using group showed significant improvements in average fasting blood glucose (148 to 130 mg/dL) and systolic blood pressure (152 to 138 mmHg). Data mining with the Apriori algorithm revealed correlations between diseases, occupations, and environmental factors, informing public health policies. Communication between kiosks and servers used LoRa, 5G, and IEEE802.11, which are selected based on the distance and signal availability. The results support telemedicine kiosks as effective for NCD management, significantly improving key NCD indicators, average blood glucose, and blood pressure.


Asunto(s)
Glucemia , Presión Sanguínea , Enfermedades no Transmisibles , Telemedicina , Humanos , Presión Sanguínea/fisiología , Glucemia/análisis , Técnicas Biosensibles/métodos , Masculino , Algoritmos , Femenino , Persona de Mediana Edad
3.
Nanotechnology ; 34(42)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37526494

RESUMEN

Triboelectric nanogenerators (TENGs) are crucial for applications such as smart sensors and bio-electronics. In the current work, we aimed for improved performance of TENGs with incorporation of BaTiO3powder, which is known for its strong ferroelectric properties, combining it with epoxy resin to improve the flexibility of our devices. We observed that our TENGs can operate for over 24 000 cycles with no degradation of function. Additionally, we improved the electrical performance of the TENGs by incorporating various aluminum concentrations that change the electronic properties in the form of mixed epoxy resin, BaTiO3, and Al nanopowders. To identify the optimum conditions for the best performance, we analyzed the electrical characteristics and material properties by employing scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry characterization techniques. Our findings suggest that this innovative combination of materials and optimization techniques can significantly improve the performance of TENGs, making them ideal for practical applications in various fields, such as low-power electronics, environmental monitoring and healthcare. Moreover, these enhanced TENGs can serve as sustainable and dependable energy sources for various applications.

4.
Anal Methods ; 16(14): 2101-2110, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38512109

RESUMEN

The measurement of fluorescence emission for quantitative analysis is typically based on a traditional spectrofluorometer, which limits an onsite detection approach. Thus, an alternative device should be developed for fulfilling this analysis outside of the laboratory. Therefore, a low-cost, portable, and low-energy consumption fluorescence reader-based smartphone device was developed. An ultraviolet light-emitting diodes (UV-LED) was used to construct the fluorescence device-based smartphone as a low-power excitation light source. The smartphone camera was used as a detector for detecting photons from the fluorescence emission process of the fluorescence probe and was connected to a digital image platform. Transparent acrylic with orange and yellow colors was employed as a filter for reducing the interference from light source intensity. The obtained digital image was converted to red, green and blue (RGB) intensity using a custom-designed smartphone application. N,S-doped carbon nanodots (N,S-CDs) were demonstrated to be a good fluorescence indicator for determining trace quantities of Mn2+ in cosmetics. The approach exhibited high selectivity and sensitivity, detecting and quantifying analytes at 1-5 µM concentrations. Furthermore, the method's detection limit of 0.5 µM reflects its capacity to detect trace amounts of a target analyte. Mn2+ in cosmetic products was successfully analyzed using this device with high accuracy comparable with the results from inductively coupled plasma-optical emission spectroscopy (ICP-OES).

5.
Food Chem ; 384: 132478, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219228

RESUMEN

A simple, portable device for the detection of NO2- via a fluorescence method was developed. The proposed device consisted of a dark box containing a blue LED as a low-power excitation light source and a smartphone with a mobile application for RGB analysis as a light detector. Detection was mediated by using synthesized cetyltrimethylammonium bromide-stabilized gold nanoparticles (CTAB-AuNPs). The CTAB-AuNPs were etched with NO2- to yield Au3+, which catalyzes the oxidation of o-phenylenediamine (OPD) in the presence of H2O2 to generate 2,3-diaminophenazine (DAP). Triton X-100 (TX-100) micelles were introduced to improve the DAP fluorescence emission. The fluorescence intensity of DAP was recorded by the smartphone in terms of RGB intensity, which was correlated with the NO2- concentration. This method provided a wide linear working concentration range (0.5-100 µM), a limit of detection of 0.17 µM and excellent selectivity for NO2- over other anions.


Asunto(s)
Oro , Nanopartículas del Metal , Cetrimonio , Peróxido de Hidrógeno/análisis , Límite de Detección , Nitritos , Dióxido de Nitrógeno , Teléfono Inteligente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA