Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 425(6960): 824-8, 2003 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-14574409

RESUMEN

Approximately 10 million m3 x s(-1) of water flow from the Pacific Ocean into the Indian Ocean through the Indonesian seas. Within the Makassar Strait, the primary pathway of the flow, the Indonesian throughflow is far cooler than estimated earlier, as pointed out recently on the basis of ocean current and temperature measurements. Here we analyse ocean current and stratification data along with satellite-derived wind measurements, and find that during the boreal winter monsoon, the wind drives buoyant, low-salinity Java Sea surface water into the southern Makassar Strait, creating a northward pressure gradient in the surface layer of the strait. This surface layer 'freshwater plug' inhibits the warm surface water from the Pacific Ocean from flowing southward into the Indian Ocean, leading to a cooler Indian Ocean sea surface, which in turn may weaken the Asian monsoon. The summer wind reversal eliminates the obstructing pressure gradient, by transferring more-saline Banda Sea surface water into the southern Makassar Strait. The coupling of the southeast Asian freshwater budget to the Pacific and Indian Ocean surface temperatures by the proposed mechanism may represent an important negative feedback within the climate system.

2.
Sci Rep ; 9(1): 7364, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089167

RESUMEN

The Earth has experienced a global surface warming slowdown (GSWS) or so-called "global warming hiatus" since the end of the 20th century. The GSWS was marked by a La Niña-like decadal cooling in the Pacific Ocean that subsequently generated an increase in the transfer of Pacific waters into the Indian Ocean via the Indonesian Throughflow (ITF). How the Pacific water spreads through the interior of the Indian Ocean and the impact of these decadal ITF transport changes on the Indian Ocean water mass transformation and circulation remain largely unknown. Here, we analyze the thermohaline structures and current systems at different depths in the Indian Ocean prior to and during the GSWS period. Our study shows that the GSWS involved extensive changes to the Indo-Pacific ocean teleconnection system, characterized by subsurface warming and freshening in the Indian Ocean. A hitherto unknown Indian Ocean pathway of the ITF was discovered off Sumatra associated with prolonged northwestward flow within the South Java Current. Our analysis uncovers a direct linkage of enhanced ITF waters with the Agulhas Current in the Mozambique Channel from thermocline depths down to intermediate depths, that freshened the Indian Ocean. These changes in the Indian Ocean circulation and water mass characteristics impact climate variability through changing the sea surface temperature (SST) and precipitation patterns that can subsequently affect regional economies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA