Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143232

RESUMEN

The purpose of this study was to investigate the tissue regenerating and biomechanical properties of processed eggshell membrane powder (PEP) for use in 3D-scaffolds. PEP is a low-cost, natural biomaterial with beneficial bioactive properties. Most importantly, this material is available as a by-product of the chicken egg processing (breaking) industry on a large scale, and it could have potential as a low-cost ingredient for therapeutic scaffolds. Scaffolds consisting of collagen alone and collagen combined with PEP were produced and analyzed for their mechanical properties and the growth of primary fibroblasts and skeletal muscle cells. Mechanical testing revealed that a PEP/collagen-based scaffold increased the mechanical hardness of the scaffold compared with a pure collagen scaffold. Scanning electron microscopy (SEM) demonstrated an interconnected porous structure for both scaffolds, and that the PEP was evenly distributed in dense clusters within the scaffold. Fibroblast and skeletal muscle cells attached, were viable and able to proliferate for 1 and 2 weeks in both scaffolds. The cell types retained their phenotypic properties expressing phenotype markers of fibroblasts (TE7, alpha-smooth muscle actin) and skeletal muscle (CD56) visualized by immunostaining. mRNA expression of the skeletal muscle markers myoD, myogenin, and fibroblasts marker (SMA) together with extracellular matrix components supported viable phenotypes and matrix-producing cells in both types of scaffolds. In conclusion, PEP is a promising low-cost, natural biomaterial for use in combination with collagen as a scaffold for 3D-tissue engineering to improve the mechanical properties and promote cellular adhesion and growth of regenerating cells.


Asunto(s)
Materiales Biocompatibles/química , Cáscara de Huevo/química , Matriz Extracelular/química , Fibroblastos/citología , Músculo Esquelético/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Bovinos , Células Cultivadas , Humanos , Polvos/química
2.
Data Brief ; 26: 104457, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667229

RESUMEN

Eggshell (ES) and eggshell membrane (ESM) is a significant byproduct of the egg producing industry (Ahmed et al., 2019). Many studies have been undertaken to utilize ES waste for potential value added applications (Cordeiro and Hincke, 2011). Described here are the datasets from our evaluation of processed eggshell membrane powder (PEP) as a wound healing product using the mouse excisional wound splinting model (Ahmed et al., 2019). PEP biomaterial was characterized by proteomics using various extraction and solubilization strategies including moderate (lithium dodecyl sulphate (LDS) and urea/ammonium bicarbonate) and harsh conditions (3-mercaptopropionic acid (3-MPA) and NaOH/dimethylsulfoxide) in order to progressively overcome its stable, insoluble nature (Ahmed et al., 2019, Ahmed et al., 2017). Analysis of proteomic data allowed the relative abundance of the main PEP protein constituents to be determined. The efficacy of PEP for promotion of wound healing was assessed using the mouse excisional wound splinting model, and well-established semi-quantitative histological scoring. (More details about the PEP biomaterial characterization and its in vivo evaluation can be found in the related research article (Ahmed et al., 2019)).

3.
Mater Sci Eng C Mater Biol Appl ; 95: 192-203, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573242

RESUMEN

Non-healing wounds are a major health problem worldwide and a significant cause of morbidity and mortality. Effective treatments for acute and chronic skin wounds are the focus of intensive research. Eggshell membrane (ESM) is a natural proteinaceous by-product of the food industry and is suitable for biomedical applications. The objective of this study was to evaluate processed eggshell membrane powder (PEP) for the promotion of skin wound healing. PEP was characterized using proteomics and bioinformatics. Proteomic analysis of PEP identified 110 proteins, including structural proteins such as collagen and cysteine-rich eggshell membrane proteins (CREMPs) that together constitute about 40% of PEP. Functional annotation clustering showed various predicted functionalities related to wound healing including response to external stimulus, defense response, inflammatory response, and cell-substrate adhesion. The impact of PEP on wound healing was determined using the mouse excisional wound splinting model with a subsequent assessment by histopathology. PEP was found to significantly accelerate wound closure at days 3, 7, and 10. Histological assessment showed significantly thicker granulation tissue in wounds treated with PEP than non-treated controls at days 10 and 17. In addition, histological scoring showed higher levels of collagen deposition at day 10 in wounds treated with PEP, with limited inflammatory reaction. Therefore, PEP is a biocompatible and non-cytotoxic biomaterial that has great potential for development into a cost-effective wound healing product.


Asunto(s)
Materiales Biocompatibles/farmacología , Proteínas del Huevo/farmacología , Cáscara de Huevo/química , Proteómica/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Proteínas del Huevo/química , Masculino , Ratones , Ratones Endogámicos C57BL
4.
PLoS One ; 13(8): e0201975, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30080894

RESUMEN

Avian eggshell membrane (ESM) is a natural biomaterial that has been used as an alternative natural bandage to cure wounds, and is available in large quantities from egg industries. We have previously demonstrated that processed eggshell membrane powder (PEP), aiming to be used in a low cost wound healing product, possesses anti-inflammatory properties. In this study, we further investigated effects of PEP on MMP activities in vitro (a dermal fibroblast cell culture system) and in vivo (a mouse skin wound healing model). Three days incubation with PEP in cell culture led to rearrangement of the actin-cytoskeleton and vinculin in focal adhesions and increased syndecan-4 shedding. In addition, we observed increased matrix metalloproteinase type 2 (MMP-2) enzyme activation, without effects on protein levels of MMP-2 or its regulators (membrane type 1 (MT1)-MMP and tissue inhibitor of matrix metalloproteinase type 2 (TIMP-2). Longer incubation (10 days) led to increased protein levels of MMP-2 and its regulators. We also observed an increased alpha-smooth muscle actin (α-SMA) production, suggesting an effect of PEP on myofibroblast differentiation. In vivo, using the mouse skin wound healing model, PEP treatment (3 days) increased MMP activity at the wound edges, along with increased MMP-2 and MMP-9 protein levels, and increased keratinocyte cell proliferation. Altogether, our data suggest PEP stimulates MMP activity, and with a positive effect on early cellular events during wound healing.


Asunto(s)
Cáscara de Huevo/química , Metaloproteinasas de la Matriz/metabolismo , Polvos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Biomarcadores , Diferenciación Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dermis/citología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Humanos , Metaloproteinasas de la Matriz/genética , Ratones , Estrés Fisiológico , Cicatrización de Heridas/genética
5.
J Proteomics ; 155: 49-62, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28087451

RESUMEN

The avian eggshell membrane (ESM) is stabilized by extensive cross-linkages, making the identification of its protein constituents technically challenging. Herein, we applied various extraction/solubilization conditions followed by proteomic analysis to characterize the protein constituents of ESM derived from the unfertilized chicken eggs. The egg white and eggshell proteomes (including previous published work) were determined and compared to ESM to identify proteins that are relatively or highly specific to ESM. Merging the results from different extraction/solubilization conditions with various proteomes allowed the identification of 472, 225, and 488 proteins in the ESM, egg white, and eggshell proteomes, respectively. Of these, 163 and 124 proteins were relatively or highly specific to ESM, respectively. GO term analysis of the common proteins and ESM unique proteins generated 8 and 9 significantly enriched functional groups, respectively. Different families of proteins that were identified as ESM-specific included collagens, CREMPs, histones, AvBDs, lysyl oxidase-like 2 (LOXL2), and ovocalyxin-36 (OCX36). These proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. Overall, our results highlight the structural nature of the ESM constituents that are relevant to various biomedical applications, such as wound healing. BIOLOGICAL SIGNIFICANCE: The eggshell membranes (ESM) are a highly resilient double-layered fibrous meshwork that is secreted while the forming egg transits a specialized oviduct segment, the white isthmus. The ESM protects against pathogen invasion and provides a platform for nucleation of the calcitic eggshell (ES). ESM is greatly stabilized by the extensive desmosine, isodesmosine and disulfide cross-linkages which make the identification of its protein constituents by standard proteomic approaches technically challenging. Comparative proteomic analyses of ESM, egg white, and ES proteins showed proteins groups that are relatively or highly specific to ESM. These groups of proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. These features are essential for eggshell quality and for the prevention of pathogen invasion which reinforce food safety of the table egg.


Asunto(s)
Pollos/metabolismo , Proteínas del Huevo/metabolismo , Cáscara de Huevo/metabolismo , Proteoma/metabolismo , Proteómica , Animales
6.
J Inflamm Res ; 10: 83-96, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740415

RESUMEN

Avian eggshell membrane (ESM) is a natural biomaterial that has been used as an alternative natural bandage on burned and cut skin injuries for >400 years in Asian countries, and is available in large quantities from egg industries. Our aim was to characterize ESM that was separated and processed from egg waste, and to study whether this material possesses anti-inflammatory properties, making it suitable as an ingredient in industrial production of low cost wound healing products. Our results show that the processed ESM particles retain a fibrous structure similar to that observed for the native membrane, and contain collagen, and carbohydrate components such as hyaluronic acid and sulfated glycosaminoglycans, as well as N-glycans, mostly with uncharged structures. Furthermore, both processed ESM powder and the ESM-derived carbohydrate fraction had immunomodulation properties in monocytes and macrophage-like cells. Under inflammatory conditions induced by lipopolysaccharide, the ESM powder and the isolated carbohydrate fraction reduced the activity of the transcription factor nuclear factor-κB. The expression of the immune regulating receptors toll-like receptor 4 and ICAM-1, as well as the cell surface glycoprotein CD44, all important during inflammation response, were down-regulated by these fractions. Interestingly, our experiments show that the two fractions regulated cytokine secretion differently: ESM depressed inflammation by increased secretion of the anti-inflammatory cytokine IL-10 while the carbohydrate fraction reduced secretions of the pro inflammatory cytokines IL-1ß and IL-6. Also, the phosphorylation of p65 and p50 subunits of nuclear factor-κB, as well as nuclear localization, differed between processed ESM powder and carbohydrate fraction, suggesting different down-stream regulation during inflammation. In conclusion, processed ESM powder and its soluble carbohydrate components possess anti-inflammatory properties, demonstrating the potential of ESM as a novel biological wound dressing for treatment of chronic inflammatory wounds.

7.
FEBS Lett ; 580(30): 6891-7, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17150215

RESUMEN

ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of "safe-food" strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.


Asunto(s)
Antimonio/química , Antimonio/farmacología , Arabidopsis/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Sales (Química)/química , Antineoplásicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas/genética , ARN de Planta/genética
8.
J Biophotonics ; 3(8-9): 512-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20414905

RESUMEN

Characterization and identification of fungi in food industry is an important issue both for routine analysis and trouble-shooting incidences. Present microbial techniques for fungal characterization suffer from a low throughput and are time consuming. In this study we present a protocol for high-throughput microcultivation and spectral characterization of fungi by Fourier transform infrared spectroscopy. For the study 11 species of in total five different fungal genera (Alternaria, Aspergillus, Mucor, Paecilomyces, and Phoma) were analyzed by FTIR spectroscopy. All the strains were isolated from trouble-shooting incidents in the production of low and high acid beverages. The cultivation was performed in malt extract broth (liquid medium) in a Bioscreen C system, allowing high-throughput cultivation of 200 samples at the same time. Mycelium was subsequently investigated by high-throughput Fourier transform infrared spectroscopy. Four spectral regions, fatty acids + lipid (3200-2800 cm(-1), 1300-1000 cm(-1)), protein-lipid (1800-1200 cm(-1)), carbohydrates (1200-700 cm(-1)) and "finger print" (900-700 cm(-1)) were evaluated for reproducibility and discrimination ability. The results show that all spectral regions evaluated can be used as spectroscopic biomarkers for differentiation of fungi by FTIR. The influence of different growth times on the ability of species discrimination by FTIR spectroscopy was investigated, and an optimal separation of all five genera was observed after five days of growth. This work presents a novel concept for high-throughput cultivation of fungi for FTIR spectroscopy that enables characterization or identification of hundreds of strains per day.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Análisis de los Alimentos/métodos , Microbiología de Alimentos , Hongos/clasificación , Técnicas de Tipificación Micológica/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Bebidas/microbiología , Hongos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA