Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173046

RESUMEN

Cytoplasmic streaming with extremely high velocity (∼70 µm s-1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by myosin XI, it has been suggested that a myosin XI with a velocity of 70 µm s-1, the fastest myosin measured so far, exists in Chara cells. However, the velocity of the previously cloned Chara corallina myosin XI (CcXI) was about 20 µm s-1, one-third of the cytoplasmic streaming velocity in Chara Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. We cloned these four myosin XI (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 motor domains (MDs) were similar to that of CcXI MD, the velocities of CbXI-1 and CbXI-2 MDs were 3.2 times and 2.8 times faster than that of CcXI MD, respectively. The velocity of chimeric CbXI-1, a functional, full-length CbXI-1 construct, was 60 µm s-1 These results suggest that CbXI-1 and CbXI-2 would be the main contributors to cytoplasmic streaming in Chara cells and show that these myosins are ultrafast myosins with a velocity 10 times faster than fast skeletal muscle myosins in animals. We also report an atomic structure (2.8-Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-electron microscopy structure of acto-myosin XI at low resolution (4.3-Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loops support this hypothesis.


Asunto(s)
Chara/genética , Corriente Citoplasmática/fisiología , Miosinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Corriente Citoplasmática/genética , Miosinas/genética
2.
Biochem Biophys Res Commun ; 709: 149855, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38579618

RESUMEN

P-glycoprotein (P-gp) is an ATP-binding cassette transporter known for its roles in expelling xenobiotic compounds from cells and contributing to cellular drug resistance through multidrug efflux. This mechanism is particularly problematic in cancer cells, where it diminishes the therapeutic efficacy of anticancer drugs. P-gp inhibitors, such as elacridar, have been developed to circumvent the decrease in drug efficacy due to P-gp efflux. An earlier study reported the cryo-EM structure of human P-gp-Fab (MRK-16) complex bound by two elacridar molecules, at a resolution of 3.6 Å. In this study, we have obtained a higher resolution (2.5 Å) structure of the P-gp- Fab (UIC2) complex bound by three elacridar molecules. This finding, which exposes a larger space for compound-binding sites than previously acknowledged, has significant implications for the development of more selective inhibitors and enhances our understanding of the compound recognition mechanism of P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Acridinas , Tetrahidroisoquinolinas , Humanos , Acridinas/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Microscopía por Crioelectrón
3.
J Biol Chem ; 298(3): 101722, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151692

RESUMEN

DTG/DTS rhodopsin, which was named based on a three-residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best-characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.


Asunto(s)
Bombas de Protones , Rodopsina , Cristalografía por Rayos X , Luz , Bombas de Protones/química , Protones , Rodopsina/metabolismo , Rodopsinas Microbianas/química , Solventes
4.
Biochem Biophys Res Commun ; 533(1): 57-63, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32921414

RESUMEN

Podoplanin (PDPN) is a highly O-glycosylated glycoprotein that is utilized as a specific lymphatic endothelial marker under pathophysiological conditions. We previously developed an anti-human PDPN (hPDPN) monoclonal antibody (mAb), clone LpMab-3, which recognizes the epitope, including both the peptides and the attached disialy-core-l (NeuAcα2-3Galßl-3 [NeuAcα2-6]GalNAcαl-O-Thr) structure at the Thr76 residue in hPDPN. However, it is unclear if the mAb binds directly to both the peptides and glycans. In this study, we synthesized the binding epitope region of LpMab-3 that includes the peptide (-67LVATSVNSV-T-GIRIEDLP84-) possessing a disialyl-core-1 O-glycan at Thr76, and we determined the crystal structure of the LpMab-3 Fab fragment that was bound to the synthesized glycopeptide at a 2.8 Å resolution. The six amino acid residues and two sialic acid residues are directly associated with four complementarity-determining regions (CDRs; H1, H2, H3, and L3) and four CDRs (H2, H3, L1, and L3), respectively. These results suggest that IgG is advantageous for generating binders against spacious epitopes such as glycoconjugates.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Glicopéptidos/inmunología , Glicoproteínas de Membrana/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Cristalografía por Rayos X , Epítopos/química , Epítopos/inmunología , Glicopéptidos/química , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Glicoproteínas de Membrana/química , Modelos Moleculares
5.
Nature ; 493(7434): 703-7, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23334411

RESUMEN

In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.


Asunto(s)
Enterococcus/enzimología , Modelos Moleculares , ATPasas de Translocación de Protón Vacuolares/química , Sitios de Unión , Cristalización , Enterococcus/genética , Mutación , Nucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Rotación , ATPasas de Translocación de Protón Vacuolares/genética
6.
Cell Mol Life Sci ; 75(10): 1789-1802, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29387903

RESUMEN

Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.


Asunto(s)
Proteínas Motoras Moleculares/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Conformación Proteica , Rotación , ATPasas de Translocación de Protón Vacuolares/fisiología
7.
Proc Natl Acad Sci U S A ; 108(33): 13474-9, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21813759

RESUMEN

The prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study the ion-translocation mechanism because it transports Na(+), which can be detected by radioisotope (22Na(+)) experiments and X-ray crystallography. In this study, we demonstrated that the binding affinity of the rotor ring (K ring) for 22Na(+) decreased approximately 30-fold by reaction with N,N(')-dicyclohexylcarbodiimide (DCCD), and determined the crystal structures of Na(+)-bound and Na(+)-unbound K rings modified with DCCD at 2.4- and 3.1-Å resolutions, respectively. Overall these structures were similar, indicating that there is no global conformational change associated with release of Na(+) from the DCCD-K ring. A conserved glutamate residue (E139) within all 10 ion-binding pockets of the K ring was neutralized by modification with DCCD, and formed an "open" conformation by losing hydrogen bonds with the Y68 and T64 side chains, resulting in low affinity for Na(+). This open conformation is likely to be comparable to that of neutralized E139 forming a salt bridge with the conserved arginine of the stator during the ion-translocation process. Based on these findings, we proposed the ion-translocation model that the binding affinity for Na(+) decreases due to the neutralization of E139, thus releasing bound Na(+), and that the structures of Na(+)-bound and Na(+)-unbound DCCD-K rings are corresponding to intermediate states before and after release of Na(+) during rotational catalysis of V-ATPase, respectively.


Asunto(s)
Biocatálisis , Diciclohexilcarbodiimida/química , Sodio/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico , Enterococcus/enzimología , Unión Proteica , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(50): 19955-60, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22114184

RESUMEN

V-ATPases function as ATP-dependent ion pumps in various membrane systems of living organisms. ATP hydrolysis causes rotation of the central rotor complex, which is composed of the central axis D subunit and a membrane c ring that are connected by F and d subunits. Here we determined the crystal structure of the DF complex of the prokaryotic V-ATPase of Enterococcus hirae at 2.0-Å resolution. The structure of the D subunit comprised a long left-handed coiled coil with a unique short ß-hairpin region that is effective in stimulating the ATPase activity of V(1)-ATPase by twofold. The F subunit is bound to the middle portion of the D subunit. The C-terminal helix of the F subunit, which was believed to function as a regulatory region by extending into the catalytic A(3)B(3) complex, contributes to tight binding to the D subunit by forming a three-helix bundle. Both D and F subunits are necessary to bind the d subunit that links to the c ring. From these findings, we modeled the entire rotor complex (DFdc ring) of V-ATPase.


Asunto(s)
Enterococcus/enzimología , Células Procariotas/enzimología , Subunidades de Proteína/química , ATPasas de Translocación de Protón Vacuolares/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Electricidad Estática , Homología Estructural de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo
9.
Nat Struct Mol Biol ; 31(2): 275-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177681

RESUMEN

A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa
10.
ACS Cent Sci ; 8(7): 915-925, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35912346

RESUMEN

The mechanism of rotatory catalysis in ATP-hydrolyzing molecular motors remains an unresolved puzzle in biological energy transfer. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, knowledge on how the coupling between the chemical and mechanical steps within motors enforces directional rotatory movements remains fragmentary. Even more contentious is to pinpoint the rate-limiting step of a multistep rotation process. Here, using vacuolar or V1-type hexameric ATPase as an exemplary rotational motor, we present a model of the complete 4-step conformational cycle involved in rotatory catalysis. First, using X-ray crystallography, a new intermediate or "dwell" is identified, which enables the release of an inorganic phosphate (or Pi) after ATP hydrolysis. Using molecular dynamics simulations, this new dwell is placed in a sequence with three other crystal structures to derive a putative cyclic rotation path. Free-energy simulations are employed to estimate the rate of the hexameric protein transformations and delineate allosteric effects that allow new reactant ATP entry only after hydrolysis product exit. An analysis of transfer entropy brings to light how the side-chain-level interactions transcend into larger-scale reorganizations, highlighting the role of the ubiquitous arginine-finger residues in coupling chemical and mechanical information. An inspection of all known rates encompassing the 4-step rotation mechanism implicates the overcoming of the ADP interactions with V1-ATPase to be the rate-limiting step of motor action.

11.
Structure ; 29(3): 203-212.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450182

RESUMEN

The hERG channel is a voltage-gated potassium channel involved in cardiac repolarization. Off-target hERG inhibition by drugs has become a critical issue in the pharmaceutical industry. The three-dimensional structure of the hERG channel was recently reported at 3.8-Å resolution using cryogenic electron microscopy (cryo-EM). However, the drug inhibition mechanism remains unclear because of the scarce structural information regarding the drug- and potassium-bound hERG channels. In this study, we obtained the cryo-EM density map of potassium-bound hERG channel complexed with astemizole, a well-known hERG inhibitor that increases risk of potentially fatal arrhythmia, at 3.5-Å resolution. The structure suggested that astemizole inhibits potassium conduction by binding directly below the selectivity filter. Furthermore, we propose a possible binding model of astemizole to the hERG channel and provide insights into the unusual sensitivity of hERG to several drugs.


Asunto(s)
Astemizol/química , Canal de Potasio ERG1/química , Bloqueadores de los Canales de Potasio/química , Astemizol/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica
12.
J Phys Chem B ; 124(6): 990-1000, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31955569

RESUMEN

We often encounter a case where two proteins, whose amino-acid sequences are similar, are quite different with regard to the thermostability. As a striking example, we consider the two seven-transmembrane proteins: recently discovered Rubrobacter xylanophilus rhodopsin (RxR) and long-known bacteriorhodopsin from Halobacterium salinarum (HsBR). They commonly function as a light-driven proton pump across the membrane. Though their sequence similarity and identity are ∼71 and ∼45%, respectively, RxR is much more thermostable than HsBR. In this study, we solve the three-dimensional structure of RxR using X-ray crystallography and find that the backbone structures of RxR and HsBR are surprisingly similar to each other: The root-mean-square deviation for the two structures calculated using the backbone Cα atoms of the seven helices is only 0.86 Å, which makes the large stability difference more puzzling. We calculate the thermostability measure and its energetic and entropic components for RxR and HsBR using our recently developed statistical-mechanical theory. The same type of calculation is independently performed for the portions playing essential roles in the proton-pumping function, helices 3 and 7, and their structural properties are related to the probable roles of water molecules in the proton-transporting mechanism. We succeed in elucidating how RxR realizes its exceptionally high stability with the original function being retained. This study provides an important first step toward the establishment of a method correlating microscopic, geometric characteristics of a protein with its thermodynamic properties and enhancing the thermostability through amino-acid mutations without vitiating the original function.


Asunto(s)
Actinobacteria/química , Halobacterium salinarum/química , Bombas de Protones/química , Rodopsinas Microbianas/química , Termodinámica , Cristalografía por Rayos X , Modelos Moleculares , Pliegue de Proteína , Solventes/química
13.
Front Physiol ; 10: 46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804798

RESUMEN

V1-ATPase exemplifies the ubiquitous rotary motor, in which a central shaft DF complex rotates inside a hexagonally arranged catalytic A3B3 complex, powered by the energy from ATP hydrolysis. We have recently reported a number of crystal structures of the Enterococcus hirae A3B3DF (V1) complex corresponding to its nucleotide-bound intermediate states, namely the forms waiting for ATP hydrolysis (denoted as catalytic dwell), ATP binding (ATP-binding dwell), and ADP release (ADP-release dwell) along the rotatory catalytic cycle of ATPase. Furthermore, we have performed microsecond-scale molecular dynamics simulations and free-energy calculations to investigate the conformational transitions between these intermediate states and to probe the long-time dynamics of the molecular motor. In this article, the molecular structure and dynamics of the V1-ATPase are reviewed to bring forth a unified model of the motor's remarkable rotational mechanism.

14.
Protein Sci ; 28(4): 694-706, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653270

RESUMEN

Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that phosphorylate diacylglycerol into phosphatidic acid, modulating the levels of these key signaling lipids. Recently, increasing attention has been paid to DGKα isozyme as a potential target for cancer immunotherapy. We have previously shown that DGKα is positively regulated by Ca2+ binding to its N-terminal EF-hand domains (DGKα-EF). However, little progress has been made for the structural biology of mammalian DGKs and the molecular mechanism underlying the Ca2+ -triggered activation remains unclear. Here we report the first crystal structure of Ca2+ -bound DGKα-EF and analyze the structural changes upon binding to Ca2+ . DGKα-EF adopts a canonical EF-hand fold, but unexpectedly, has an additional α-helix (often called a ligand mimic [LM] helix), which is packed into the hydrophobic core. Biophysical and biochemical analyses reveal that DGKα-EF adopts a protease-susceptible "open" conformation without Ca2+ that tends to form a dimer. Cooperative binding of two Ca2+ ions dissociates the dimer into a well-folded monomer, which resists to proteolysis. Taken together, our results provide experimental evidence that Ca2+ binding induces substantial conformational changes in DGKα-EF, which likely regulates intra-molecular interactions responsible for the activation of DGKα and suggest a possible role of the LM helix for the Ca2+ -induced conformational changes. SIGNIFICANCE STATEMENT: Diacylglycerol kinases (DGKs), which modulates the levels of two lipid second messengers, diacylglycerol and phosphatidic acid, is still structurally enigmatic enzymes since its first identification in 1959. We here present the first crystal structure of EF-hand domains of diacylglycerol kinase α in its Ca2+ bound form and characterize Ca2+ -induced conformational changes, which likely regulates intra-molecular interactions. Our study paves the way for future studies to understand the structural basis of DGK isozymes.


Asunto(s)
Calcio/metabolismo , Diacilglicerol Quinasa/metabolismo , Calcio/química , Cristalografía por Rayos X , Diacilglicerol Quinasa/química , Motivos EF Hand , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
15.
Sci Adv ; 5(1): eaau8149, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30729160

RESUMEN

V1-ATPase is an ATP-driven rotary motor that is composed of a ring-shaped A3B3 complex and a central DF shaft. The nucleotide-free A3B3 complex of Enterococcus hirae, composed of three identical A1B1 heterodimers, showed a unique asymmetrical structure, probably due to the strong binding of the N-terminal barrel domain, which forms a crown structure. Here, we mutated the barrel region to weaken the crown, and performed structural analyses using high-speed atomic force microscopy and x-ray crystallography of the mutant A3B3. The nucleotide-free mutant A3B3 complex had a more symmetrical open structure than the wild type. Binding of nucleotides produced a closely packed spiral-like structure with a disrupted crown. These findings suggest that wild-type A3B3 forms a metastable (stressed) asymmetric structure composed of unstable A1B1 conformers due to the strong constraint of the crown. The results further the understanding of the principle of the cooperative transition mechanism of rotary motors.


Asunto(s)
Enterococcus hirae/enzimología , Estructura Cuaternaria de Proteína , ATPasas de Translocación de Protón Vacuolares/química , Sitios de Unión , Biocatálisis , Sistema Libre de Células/metabolismo , Cristalografía por Rayos X , Escherichia coli/citología , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Proteínas Mutantes/química , Mutación , Nucleótidos/química , Dominios Proteicos/genética , Multimerización de Proteína , Subunidades de Proteína/química , Rotación
16.
Nat Commun ; 7: 13235, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27807367

RESUMEN

V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 µM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Difosfato , Adenilil Imidodifosfato , Cristalografía por Rayos X , Escherichia coli , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/química
17.
Curr Opin Struct Biol ; 31: 49-56, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25796033

RESUMEN

In ion-transporting rotary ATPases, the mechanical rotation of inner rotor subunits against other stator subunits in the complex mediates conversion of chemical free energy from ATP hydrolysis into electrochemical potential by pumping ions across the cell membrane. To fully understand the rotational mechanism of energy conversion, it is essential to analyze a target sample by multiple advanced methods that differ in spatiotemporal resolutions and sample environments. Here, we describe such a strategy applied to the water-soluble V1 moiety of Enterococcus hirae V-ATPase; this strategy involves integration of crystal structure studies and single-molecule analysis of rotary dynamics and torque generation. In addition, we describe our current model of the chemo-mechanical coupling scheme obtained by this approach, as well as future prospects.


Asunto(s)
Adenosina Trifosfatasas/química , Cristalografía por Rayos X/métodos , Enterococcus/enzimología , Rotación , Adenosina Trifosfatasas/metabolismo , Fenómenos Biomecánicos , Humanos , Torque
19.
PLoS One ; 8(9): e74291, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058539

RESUMEN

Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.


Asunto(s)
Enterococcus/enzimología , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominio Catalítico , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Modelos Moleculares , Proteínas Mutantes/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA