Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011372, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141303

RESUMEN

Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, "non-fit" or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, "fit" trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Humanos , Giardiasis/metabolismo , Trofozoítos/metabolismo , Intestinos , Giardia lamblia/metabolismo , Células Epiteliales/metabolismo , Mamíferos
2.
Nucleic Acids Res ; 51(7): 3436-3451, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912103

RESUMEN

Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit's head swiveling-universal for translocation. In addition, we observe the eukaryote-specific 'subunit rolling' dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned 'leaving phosphate (Pi)' that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.


Asunto(s)
Giardia lamblia , Humanos , Giardia lamblia/genética , Microscopía por Crioelectrón , Modelos Moleculares , Ribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , ARN de Transferencia/metabolismo , Eucariontes/metabolismo , Bacterias/metabolismo , Factor 2 de Elongación Peptídica/química , Biosíntesis de Proteínas
3.
J Biol Chem ; 298(6): 102028, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568200

RESUMEN

Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis-infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.


Asunto(s)
Replicación del ADN , Giardia lamblia , Proteínas Protozoarias , Timidina Quinasa , Zidovudina , Animales , Descubrimiento de Drogas , Gerbillinae , Giardia lamblia/enzimología , Giardia lamblia/genética , Giardiasis/tratamiento farmacológico , Metronidazol/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Timidina , Timidina Quinasa/antagonistas & inhibidores , Timidina Quinasa/genética , Zidovudina/farmacología
4.
Genomics ; 114(5): 110462, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35998788

RESUMEN

Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus, a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation are presented, as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.


Asunto(s)
Giardia lamblia , Variación Antigénica/genética , Antígenos de Protozoos , Antígenos de Superficie/genética , Cisteína/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas de la Membrana/genética , Proteínas Protozoarias/genética
5.
BMC Genomics ; 22(1): 660, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521339

RESUMEN

BACKGROUND: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS: The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Pollos/genética , Coccidiosis/genética , Coccidiosis/veterinaria , Eimeria tenella/genética , Perfilación de la Expresión Génica , Enfermedades de las Aves de Corral/genética , RNA-Seq
6.
Mol Biol Evol ; 37(12): 3525-3549, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32702104

RESUMEN

Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.


Asunto(s)
Giardia/enzimología , Proteína Metiltransferasas/metabolismo , Proteoma , Evolución Biológica , Proteínas del Citoesqueleto/metabolismo , Metilación , Trofozoítos/crecimiento & desarrollo
7.
Parasitology ; 148(6): 712-725, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33536090

RESUMEN

The study aimed to monitor parasite and host gene expression during the early stages of Eimeria tenella infection of chicken cells using dual RNA-Seq analysis. For this, we used chicken macrophage-like cell line HD11 cultures infected in vitro with purified E. tenella sporozoites. Cultures were harvested between 2 and 72 h post-infection and mRNA was extracted and sequenced. Dual RNA-Seq analysis showed clear patterns of altered expression for both parasite and host genes during infection. For example, genes in the chicken immune system showed upregulation early (2­4 h), a strong downregulation of genes across the immune system at 24 h and a repetition of early patterns at 72 h, indicating that invasion by a second generation of parasites was occurring. The observed downregulation may be due to immune self-regulation or to immune evasive mechanisms exerted by E. tenella. Results also suggested pathogen recognition receptors involved in E. tenella innate recognition, MRC2, TLR15 and NLRC5 and showed distinct chemokine and cytokine induction patterns. Moreover, the expression of several functional categories of Eimeria genes, such as rhoptry kinase genes and microneme genes, were also examined, showing distinctive differences which were expressed in sporozoites and merozoites.


Asunto(s)
Eimeria tenella/fisiología , Macrófagos/parasitología , RNA-Seq/métodos , Animales , Línea Celular , Pollos , Eimeria tenella/genética , Eimeria tenella/inmunología , Eimeria tenella/aislamiento & purificación , Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos/inmunología , ARN Protozoario/química , ARN Protozoario/aislamiento & purificación , Transcripción Genética
8.
Traffic ; 18(9): 604-621, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28696565

RESUMEN

Our understanding of protein and lipid trafficking in eukaryotic cells has been challenged by the finding of different forms of compartmentalization and cargo processing in protozoan parasites. Here, we show that, in the absence of a Golgi compartment in Giardia, proteins destined for secretion are directly sorted and packaged at specialized ER regions enriched in COPII coatomer complexes and ceramide. We also demonstrated that ER-resident proteins are retained at the ER by the action of a KDEL receptor, which, in contrast to other eukaryotic KDEL receptors, showed no interorganellar dynamic but instead acts specifically at the limit of the ER membrane. Our study suggests that the ER-exit sites and the perinuclear ER-membranes are capable of performing protein-sorting functions. In our view, the description presented here suggests that Giardia adaptation represents an extreme example of reductive evolution without loss of function.


Asunto(s)
Retículo Endoplásmico/metabolismo , Giardia lamblia/metabolismo , Aparato de Golgi/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Receptores de Péptidos/metabolismo
9.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30962402

RESUMEN

Giardia lamblia, one of the most common protozoal infections of the human intestine, is an important worldwide cause of diarrheal disease, malabsorption, malnutrition, delayed cognitive development in children, and protracted postinfectious syndromes. Despite its medical importance, no human vaccine is available against giardiasis. A crude veterinary vaccine has been developed, and experimental vaccines based on expression of multiple variant-specific surface proteins have been reported, but poorly defined vaccine components and excessive antigen variability are problematic for pharmaceutical vaccine production. To expand the repertoire of antigen candidates for vaccines, we reasoned that surface proteins may provide an enriched source of such antigens since key host effectors, such as secretory IgA, can directly bind to such antigens in the intestinal lumen and interfere with epithelial attachment. Here, we have applied a proteomics approach to identify 23 novel surface antigens of G. lamblia that show >90% amino acid sequence identity between the two human-pathogenic genetic assemblages (A and B) of the parasite. Surface localization of a representative subset of these proteins was confirmed by immunostaining. Four selected proteins, uridine phosphorylase-like protein-1, protein 21.1 (GL50803_27925), α1-giardin, and α11-giardin, were subsequently produced in recombinant form and shown to be immunogenic in mice and G. lamblia-infected humans and confer protection against G. lamblia infection upon intranasal immunization in rodent models of giardiasis. These results demonstrate that identification of conserved surface antigens provides a powerful approach for overcoming a key rate-limiting step in the design and construction of an effective vaccine against giardiasis.


Asunto(s)
Antígenos de Protozoos/inmunología , Giardia lamblia/inmunología , Giardiasis/parasitología , Proteoma/inmunología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Adulto , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Reacciones Cruzadas , Femenino , Giardia lamblia/química , Giardia lamblia/genética , Giardiasis/inmunología , Giardiasis/prevención & control , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteoma/química , Proteoma/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/química , Vacunas Antiprotozoos/genética , Adulto Joven
10.
BMC Biol ; 15(1): 27, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28372543

RESUMEN

BACKGROUND: Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS: In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS: This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.


Asunto(s)
Retículo Endoplásmico/metabolismo , Giardia lamblia/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Evolución Biológica , Coenzima A Ligasas/metabolismo , Dinaminas/metabolismo , Giardia lamblia/citología , Interfase
11.
PLoS Genet ; 10(2): e1004053, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516394

RESUMEN

Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host.


Asunto(s)
Diplomonadida/genética , Peces/genética , Genoma , Análisis de Secuencia de ADN , Animales , Diplomonadida/patogenicidad , Ambiente , Peces/parasitología , Interacciones Huésped-Parásitos/genética , Anotación de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno
12.
BMC Biol ; 14: 62, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27480115

RESUMEN

BACKGROUND: It is generally thought that the evolutionary transition to parasitism is irreversible because it is associated with the loss of functions needed for a free-living lifestyle. Nevertheless, free-living taxa are sometimes nested within parasite clades in phylogenetic trees, which could indicate that they are secondarily free-living. Herein, we test this hypothesis by studying the genomic basis for evolutionary transitions between lifestyles in diplomonads, a group of anaerobic eukaryotes. Most described diplomonads are intestinal parasites or commensals of various animals, but there are also free-living diplomonads found in oxygen-poor environments such as marine and freshwater sediments. All these nest well within groups of parasitic diplomonads in phylogenetic trees, suggesting that they could be secondarily free-living. RESULTS: We present a transcriptome study of Trepomonas sp. PC1, a diplomonad isolated from marine sediment. Analysis of the metabolic genes revealed a number of proteins involved in degradation of the bacterial membrane and cell wall, as well as an extended set of enzymes involved in carbohydrate degradation and nucleotide metabolism. Phylogenetic analyses showed that most of the differences in metabolic capacity between free-living Trepomonas and the parasitic diplomonads are due to recent acquisitions of bacterial genes via gene transfer. Interestingly, one of the acquired genes encodes a ribonucleotide reductase, which frees Trepomonas from the need to scavenge deoxyribonucleosides. The transcriptome included a gene encoding squalene-tetrahymanol cyclase. This enzyme synthesizes the sterol substitute tetrahymanol in the absence of oxygen, potentially allowing Trepomonas to thrive under anaerobic conditions as a free-living bacterivore, without depending on sterols from other eukaryotes. CONCLUSIONS: Our findings are consistent with the phylogenetic evidence that the last common ancestor of diplomonads was dependent on a host and that Trepomonas has adapted secondarily to a free-living lifestyle. We believe that similar studies of other groups where free-living taxa are nested within parasites could reveal more examples of secondarily free-living eukaryotes.


Asunto(s)
Adaptación Fisiológica/genética , Diplomonadida/genética , Diplomonadida/fisiología , Genes Protozoarios , Parásitos/genética , Parásitos/fisiología , Animales , Pared Celular/metabolismo , Diplomonadida/enzimología , Transferasas Intramoleculares/genética , Funciones de Verosimilitud , Lisosomas/metabolismo , Parásitos/enzimología , Filogenia , Transcriptoma/genética
13.
Antimicrob Agents Chemother ; 60(10): 6034-45, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27458219

RESUMEN

Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control.


Asunto(s)
Antiprotozoarios/farmacología , Giardia lamblia/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Metronidazol/farmacología , Transcripción Genética , Trofozoítos/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Giardia lamblia/genética , Giardia lamblia/crecimiento & desarrollo , Giardia lamblia/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Código de Histonas/efectos de los fármacos , Calor , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo
14.
BMC Genomics ; 16: 697, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370391

RESUMEN

BACKGROUND: The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates. RESULTS: Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by ~100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25-0.35 %, which is 25-30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites. CONCLUSIONS: Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species.


Asunto(s)
Genoma de Protozoos , Genómica , Giardia lamblia/genética , Alelos , Diarrea/parasitología , Femenino , Genes Protozoarios , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Giardia lamblia/clasificación , Giardia lamblia/aislamiento & purificación , Giardiasis/parasitología , Humanos , Familia de Multigenes , Filogenia , Polimorfismo de Nucleótido Simple , Transporte de Proteínas
15.
Mol Microbiol ; 92(5): 903-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24865634

RESUMEN

On 19 January 2014 Rolf ('Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.


Asunto(s)
Archaea/citología , Ciclo Celular/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Suecia
16.
Exp Parasitol ; 154: 25-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25825252

RESUMEN

The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.


Asunto(s)
Replicación del ADN/efectos de la radiación , ADN Protozoario/efectos de la radiación , Giardia lamblia/efectos de la radiación , Rayos Ultravioleta , Animales , Secuencia de Bases/efectos de la radiación , Bilis/parasitología , Bovinos , Análisis por Conglomerados , Daño del ADN/efectos de la radiación , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de la radiación , Giardia lamblia/genética , Histonas/metabolismo , Fosforilación , ARN Protozoario/aislamiento & purificación , ARN Protozoario/efectos de la radiación , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/efectos de la radiación
17.
PLoS Comput Biol ; 9(3): e1003000, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555231

RESUMEN

Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3' UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Giardia lamblia/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Antígenos de Protozoos/genética , Biología Computacional , Bases de Datos Genéticas , Regulación de la Expresión Génica , Giardia lamblia/metabolismo , Giardiasis/parasitología , Humanos , Filogenia , Poliadenilación , Proteínas Protozoarias/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas
18.
BMC Microbiol ; 13: 256, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24228819

RESUMEN

BACKGROUND: Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RESULTS: RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. CONCLUSIONS: Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.


Asunto(s)
Arginina/metabolismo , Células Epiteliales/parasitología , Giardia lamblia/metabolismo , Interacciones Huésped-Patógeno , Línea Celular , Perfilación de la Expresión Génica , Humanos , Redes y Vías Metabólicas/genética
19.
Eukaryot Cell ; 11(11): 1353-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983987

RESUMEN

Eukaryotic microbes are highly diverse, and many lineages remain poorly studied. One such lineage, the diplomonads, a group of binucleate heterotrophic flagellates, has been studied mainly due to the impact of Giardia intestinalis, an intestinal, diarrhea-causing parasite in humans and animals. Here we describe the development of a stable transfection system for use in Spironucleus salmonicida, a diplomonad that causes systemic spironucleosis in salmonid fish. We designed vectors in cassette format carrying epitope tags for localization (3×HA [where HA is hemagglutinin], 2× Escherichia coli OmpF linker and mouse langerin fusion sequence [2×OLLAS], 3×MYC) and purification of proteins (2× Strep-Tag II-FLAG tandem-affinity purification tag or streptavidin binding peptide-glutathione S-transferase [SBP-GST]) under the control of native or constitutive promoters. Three selectable gene markers, puromycin acetyltransferase (pac), blasticidin S-deaminase (bsr), and neomycin phosphotransferase (nptII), were successfully applied for the generation of stable transfectants. Site-specific integration on the S. salmonicida chromosome was shown to be possible using the bsr resistance gene. We epitope tagged six proteins and confirmed their expression by Western blotting. Next, we demonstrated the utility of these vectors by recording the subcellular localizations of the six proteins by laser scanning confocal microscopy. Finally, we described the creation of an S. salmonicida double transfectant suitable for colocalization studies. The transfection system described herein and the imminent completion of the S. salmonicida genome will make it possible to use comparative genomics as an investigative tool to explore specific, as well as general, diplomonad traits, benefiting research on both Giardia and Spironucleus.


Asunto(s)
Diplomonadida/metabolismo , Vectores Genéticos/metabolismo , Transfección/métodos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Animales , Western Blotting , Cromosomas/genética , Cromosomas/metabolismo , Clonación Molecular , Diplomonadida/efectos de los fármacos , Diplomonadida/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Marcadores Genéticos , Vectores Genéticos/genética , Gentamicinas/farmacología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hemaglutininas/metabolismo , Concentración 50 Inhibidora , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Microscopía Confocal , Nucleósidos/farmacología , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Porinas/genética , Porinas/metabolismo , Regiones Promotoras Genéticas , Puromicina/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Eukaryot Cell ; 11(7): 864-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22611020

RESUMEN

In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.


Asunto(s)
Giardia/enzimología , Giardiasis/parasitología , Plásmidos/genética , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Factores de Virulencia/aislamiento & purificación , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Giardia/química , Giardia/genética , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Datos de Secuencia Molecular , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Plásmidos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA