Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37233800

RESUMEN

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Asunto(s)
Arvicolinae , Sigmodontinae , Animales , Ratas , Sigmodontinae/genética , Arvicolinae/genética , Humedales , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cariotipo , ADN Satélite/genética , Elementos Transponibles de ADN/genética
2.
Cytogenet Genome Res ; 161(1-2): 6-13, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556945

RESUMEN

Proechimys species are remarkable for their extensive chromosome rearrangements, representing a good model to understand genome evolution. Herein, we cytogenetically analyzed 3 different cytotypes of Proechimys gr. goeldii to assess their evolutionary relationship. We also mapped the transposable element SINE-B1 on the chromosomes of P. gr. goeldii in order to investigate its distribution among individuals and evaluate its possible contribution to karyotype remodeling in this species. SINE-B1 showed a dispersed distribution along chromosome arms and was also detected at the pericentromeric regions of some chromosomes, including pair 1 and the sex chromosomes, which are involved in chromosome rearrangements. In addition, we describe a new cytotype for P. gr. goeldii, reinforcing the significant role of gross chromosomal rearrangements during the evolution of the genus. The results of FISH with SINE-B1 suggest that this issue should be more deeply investigated for a better understanding of its role in the mechanisms involved in the wide variety of Proechimys karyotypes.


Asunto(s)
Cromosomas/ultraestructura , Reordenamiento Génico , Roedores/genética , Elementos de Nucleótido Esparcido Corto , Animales , Bandeo Cromosómico , Evolución Molecular , Femenino , Genoma , Heterocromatina/química , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Cromosomas Sexuales , América del Sur
3.
Genet Mol Biol ; 44(2): e20200384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877257

RESUMEN

Didelphis species have been shown to exhibit very conservative karyotypes, which mainly differ in their constitutive heterochromatin, known to be mostly composed by repetitive DNAs. In this study, we used genome skimming data combined with computational pipelines to identify the most abundant repetitive DNA families of Lutreolina crassicaudata and all six Didelphis species. We found that transposable elements (TEs), particularly LINE-1, endogenous retroviruses, and SINEs, are the most abundant mobile elements in the studied species. Despite overall similar TE proportions, we report that species of the D. albiventris group consistently present a less diverse TE composition and smaller proportions of LINEs and LTRs in their genomes than other studied species. We also identified four new putative satDNAs (sat206, sat907, sat1430 and sat2324) in the genomes of Didelphis species, which show differences in abundance and nucleotide composition. Phylogenies based on satDNA sequences showed well supported relationships at the species (sat1430) and groups of species (sat206) level, recovering topologies congruent with previous studies. Our study is one of the first attempts to present a characterization of the most abundant families of repetitive DNAs of Lutreolina and Didelphis species providing insights into the repetitive DNA composition in the genome landscape of American marsupials.

4.
Genet Mol Biol ; 43(2): e20190342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32427276

RESUMEN

The "cut-and-paste" P-element present in some Diptera illustrates two important transposable elements abilities: to move within genomes and to be transmitted between non-mating species, a phenomenon known as horizontal transposon transfer (HTT). Recent studies reported a HTT of the P-element from Drosophila melanogaster to D. simulans. P-elements first appeared in D. simulans European samples collected in 2006 and spread across several populations from Europe, Africa, North America and Japan within seven years. Nevertheless, no P-element was found in South American populations of D. simulans collected between 2002 and 2009. We investigated the presence of the P-element in D. simulans collected in five Brazilian localities between 2018 and 2019, using a combination of methodologies such as PCR, DNA sequencing and FISH on chromosomes. Our experiments revealed the presence of the P-element in all sampled individuals from the five localities. The number of P-elements per individual varied from 11 to 20 copies and truncated copies were also observed. Altogether, our results showed that P-element invasion in D. simulans is at an advanced stage in Brazil and, together with other recent studies, confirms the remarkable rapid invasion of P-elements across worldwide D. simulans populations.

5.
Cytogenet Genome Res ; 157(3): 166-171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30630162

RESUMEN

Our knowledge of Testudines evolution is limited by the lack of modern cytogenetic data. Compared to other reptiles, there is little information even on chromosome banding, let alone molecular cytogenetic data. Here, we provide detailed information on the karyotype of the European pond turtle Emys orbicularis, a model Emydidae, employing both chromosome banding and molecular cytogenetics. We provide a high-resolution G-banded karyotype and a map of rDNA genes and telomeric sequences using fluorescence in situ hybridization. We test hypotheses of sex-determining mechanisms in Emys by comparative genomic hybridization to determine if Emys has a cryptic sex-specific region. Our results provide valuable data to guide future efforts on genome sequencing and anchoring in Emydidae and for understanding karyotype evolution in Testudines.


Asunto(s)
Bandeo Cromosómico/métodos , Mapeo Cromosómico/métodos , Hibridación Fluorescente in Situ/métodos , Tortugas/genética , Animales , Bandeo Cromosómico/veterinaria , Mapeo Cromosómico/veterinaria , ADN Ribosómico/genética , Evolución Molecular , Femenino , Hibridación Fluorescente in Situ/veterinaria , Masculino , Modelos Biológicos , Telómero/genética
6.
Genome ; 62(1): 31-41, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30481091

RESUMEN

Thrichomys Trouessart, 1880 is a genus of echimyid rodents endemic to South America, distributed from northeastern Brazil to Paraguay and Bolivia. Although all the recognized species of this genus have already been karyotyped, detailed comparative cytogenetic analyses have not been performed yet. We karyologically analyzed four species of Thrichomys from different Brazilian states. Our analyses included GTG- and CBG-banding, silver-staining of the nucleolar organizer regions (Ag-NORs), and fluorescent in situ hybridization (FISH) with telomeric and 45S rDNA probes. Comparative GTG-banding suggested that the interspecific variation may result from Robertsonian rearrangements, pericentric and paracentric inversions, centromere repositioning, and heterochromatin variation. FISH with a telomeric probe showed interspecies variation in interstitial telomeric sequences (ITs) distribution. Our results represent the most complete data on the cytogenetics of Thrichomys reported to date and give an insight into the chromosome evolution of this genus.


Asunto(s)
Cariotipo , Roedores/genética , Animales , Bandeo Cromosómico , Especies en Peligro de Extinción , Heterocromatina/genética , Hibridación Fluorescente in Situ , Polimorfismo Genético , Roedores/clasificación , Telómero/genética
7.
Chromosoma ; 126(4): 519-529, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834006

RESUMEN

Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions.


Asunto(s)
Centrómero/genética , Cariotipo , Saimiri/genética , Animales , Centrómero/fisiología , Inversión Cromosómica , Pintura Cromosómica , Análisis Citogenético , Evolución Molecular , Filogenia , Translocación Genética
8.
J Mol Evol ; 86(6): 353-364, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29934734

RESUMEN

Despite their essential role in the process of chromosome segregation in eukaryotes, kinetochore proteins are highly diverse across species, being lost, duplicated, created, or diversified during evolution. Based on comparative genomics, the duplication of the inner kinetochore proteins CenH3 and Cenp-C, which are interdependent in their roles of establishing centromere identity and function, can be said to be rare in animals. Surprisingly, the Drosophila CenH3 homolog Cid underwent four independent duplication events during evolution. Particularly interesting are the highly diverged Cid1 and Cid5 paralogs of the Drosophila subgenus, which are probably present in over one thousand species. Given that CenH3 and Cenp-C likely co-evolve as a functional unit, we investigated the molecular evolution of Cenp-C in species of Drosophila. We report yet another Cid duplication (leading to Cid6) within the Drosophila subgenus and show that not only Cid, but also Cenp-C is duplicated in the entire subgenus. The Cenp-C paralogs, which we named Cenp-C1 and Cenp-C2, are highly divergent. Both Cenp-C1 and Cenp-C2 retain key motifs involved in centromere localization and function, while some functional motifs are conserved in an alternate manner between the paralogs. Interestingly, both Cid5 and Cenp-C2 are male germline-biased and evolved adaptively. However, it is currently unclear if the paralogs subfunctionalized or if the new copies acquired a new function. Our findings point towards a specific inner kinetochore composition in a specific context (i.e., spermatogenesis), which could prove valuable for the understanding of how the extensive kinetochore diversity is related to essential cellular functions.


Asunto(s)
Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Duplicación de Gen , Genes de Insecto , Células Germinativas/metabolismo , Animales , Sesgo , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Proteínas de Drosophila/metabolismo , Funciones de Verosimilitud , Masculino , Filogenia
9.
Genome ; 61(10): 771-776, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30222938

RESUMEN

Here we present, for the first time, the complete chromosome painting map of Saguinus midas, the red-handed tamarin. Chromosome banding and painting with human chromosome-specific probes were used to compare the karyotype of this species with those of four other Neotropical primates of the subfamily Callitrichinae: Leontopithecus rosalia, Callithrix geoffroyi, C. penicillata, and Mico argentatus. The chromosome painting map of S. midas was identical to that of L. rosalia and other previously studied tamarin species (genera Saguinus and Leontopithecus). The three marmoset species studied (genera Callithrix and Mico) differed in the painting pattern of four human probes (chromosomes 1, 2, 10, and 16). These paints identified the presence or absence of chromosome associations HSA 1/10 and 2/16 in these taxa. By integrating our data with those from the literature, we were able to propose an ancestral Callitrichinae karyotype. The genera Saguinus and Leontopithecus (tamarins) conserve the ancestral Callitrichinae karyotype, while Mico and Callithrix (marmosets) show more derived karyotypes due to chromosome translocations and fissions that occurred during the evolution of these taxa.


Asunto(s)
Callitrichinae/genética , Pintura Cromosómica/veterinaria , Cromosomas de los Mamíferos/genética , Saguinus/genética , Animales , Callimico/genética , Callithrix/genética , Línea Celular , Pintura Cromosómica/métodos , Cromosomas Humanos/genética , Secuencia Conservada , Sondas de ADN/genética , Evolución Molecular , Humanos , Cariotipo , Leontopithecus/genética , Masculino , Filogenia
10.
Biol Lett ; 14(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386361

RESUMEN

Satellite DNAs (satDNAs) are major components of eukaryote genomes. However, because of their quick divergence, the evolutionary origin of a given satDNA family can rarely be determined. Herein we took advantage of available primate sequenced genomes to determine the origin of the CapA satDNA (approx. 1500 bp long monomers), first described in the tufted capuchin monkey Sapajus apella We show that CapA is an abundant satDNA in Platyrrhini, whereas in the genomes of most eutherian mammals, including humans, this sequence is present only as a single copy located within a large intron of the NOS1AP (nitric oxide synthase 1 adaptor protein) gene. Our data suggest that this intronic CapA-like sequence gave rise to the CapA satDNA and we discuss possible mechanisms implicated in this event. This is the first report to our knowledge of a single copy intronic sequence giving origin to a satDNA that reaches up to 100 000 copies in some genomes.


Asunto(s)
ADN Satélite/genética , Evolución Molecular , Intrones/genética , Platirrinos/genética , Animales , Euterios/genética , Humanos , Análisis de Secuencia de ADN
11.
Cytogenet Genome Res ; 151(2): 82-88, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278505

RESUMEN

We studied the chromosomes of Callicebus nigrifrons with conventional and molecular cytogenetic methods. Our chromosome painting analysis in C. nigrifrons together with previous reports allowed us to hypothesize an ancestral Callicebinae karyotype with 2n = 48. The associations of human chromosomes (HSA) 2/22, 7/15, 10/11, and the inverted HSA2/16 would link Callicebus, Cheracebus, and Plecturocebus and would thus be present in the ancestral Callicebinae karyotype. Four fusions (HSA1b/1c, 3c/8b, 13/20, and 14/15/3/21) and 1 fission (HSA2/22) are synapomorphies of Callicebus. The associations HSA3/15 and HSA3/9 are chromosome features linking Callicebus and Cheracebus, whereas the association HSA13/17 would represent a link between Callicebus and the moloch group (Plecturocebus). Only 6 of the 33 recognized titi monkey species have now been painted with human chromosome-specific probes. Further analyses are needed to clarify the phylogenomic relationships in this species-rich group.


Asunto(s)
Pintura Cromosómica/métodos , Pitheciidae/genética , Animales , Evolución Biológica , Cromosomas de los Mamíferos , Evolución Molecular , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipo
12.
Chromosome Res ; 23(3): 597-613, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26408292

RESUMEN

Drosophila INterspersed Elements (DINEs) constitute an abundant but poorly understood group of Helitrons present in several Drosophila species. The general structure of DINEs includes two conserved blocks that may or not contain a region with tandem repeats in between. These central tandem repeats (CTRs) are similar within species but highly divergent between species. It has been assumed that CTRs have independent origins. Herein, we identify a subset of DINEs, termed DINE-TR1, which contain homologous CTRs of approximately 150 bp. We found DINE-TR1 in the sequenced genomes of several Drosophila species and in Bactrocera tryoni (Acalyptratae, Diptera). However, interspecific high sequence identity (∼ 88 %) is limited to the first ∼ 30 bp of each tandem repeat, implying that evolutionary constraints operate differently over the monomer length. DINE-TR1 is unevenly distributed across the Drosophila phylogeny. Nevertheless, sequence analysis suggests vertical transmission. We found that CTRs within DINE-TR1 have independently expanded into satellite DNA-like arrays at least twice within Drosophila. By analyzing the genome of Drosophila virilis and Drosophila americana, we show that DINE-TR1 is highly abundant in pericentromeric heterochromatin boundaries, some telomeric regions and in the Y chromosome. It is also present in the centromeric region of one autosome from D. virilis and dispersed throughout several euchromatic sites in both species. We further found that DINE-TR1 is abundant at piRNA clusters, and small DINE-TR1-derived RNA transcripts (∼25 nt) are predominantly expressed in the testes and the ovaries, suggesting active targeting by the piRNA machinery. These features suggest potential piRNA-mediated regulatory roles for DINEs at local and genome-wide scales in Drosophila.


Asunto(s)
Drosophila/genética , Estructuras Genéticas , Genoma de los Insectos , Genómica , Secuencias Repetitivas Esparcidas , Animales , Mapeo Cromosómico , Biología Computacional/métodos , ADN Satélite , Regulación de la Expresión Génica , Genómica/métodos , Gónadas/metabolismo , Heterocromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Especificidad de Órganos/genética , Filogenia , Cromosomas Politénicos/genética , ARN Interferente Pequeño/genética
13.
Genome ; 57(1): 1-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24564210

RESUMEN

Phyllomys (Echimyidae, Rodentia) is a genus of Neotropical rodents with available cytogenetic data restricted to six out of 13 species, mainly based on simple staining methods, without detailed analyses. In this work, we present new karyotypes for Phyllomys lamarum (diploid number 2n = 56, fundamental number or number of autosomal arms FN = 102) and Phyllomys sp. (2n = 74, FN = 140) from the state of Minas Gerais, southeastern Brazil. We provide the first GTG- and CBG-banding patterns, silver-staining of the nucleolar organizer regions (Ag-NORs), and fluorescence in situ hybridization (FISH) with telomeric and 45S rDNA probes of Phyllomys. In addition to examining their chromosomes and phenotypic characters, we sequenced mitochondrial DNA from the specimens analyzed to confirm their taxonomic identification. The comparison of the distinctive chromosome complements of our specimens with those of other species of Phyllomys already published allowed us to conclude that chromosome data may be very useful for the taxonomy of the genus, as no two species analyzed presented the same diploid and fundamental numbers (2n and FN).


Asunto(s)
Análisis Citogenético/métodos , Cariotipo , Roedores/clasificación , Roedores/genética , Animales , Brasil , Bandeo Cromosómico , Cromosomas de los Mamíferos/genética , ADN Mitocondrial/genética , Evolución Molecular , Femenino , Hibridación Fluorescente in Situ , Masculino , Filogenia , Ratas , Análisis de Secuencia de ADN
14.
BMC Evol Biol ; 12: 36, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429690

RESUMEN

BACKGROUND: Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. RESULTS: Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. CONCLUSIONS: Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.


Asunto(s)
Cromosomas/genética , Evolución Molecular , Filogenia , Perezosos/genética , Animales , Pintura Cromosómica , Humanos , Cariotipo
15.
Life Sci Alliance ; 5(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304430

RESUMEN

This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.


Asunto(s)
Retroelementos , Roedores , Animales , Cromosomas , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Roedores/genética
16.
Genes (Basel) ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478118

RESUMEN

The study of vertebrate genome evolution is currently facing a revolution, brought about by next generation sequencing technologies that allow researchers to produce nearly complete and error-free genome assemblies. Novel approaches however do not always provide a direct link with information on vertebrate genome evolution gained from cytogenetic approaches. It is useful to preserve and link cytogenetic data with novel genomic discoveries. Sequencing of DNA from single isolated chromosomes (ChromSeq) is an elegant approach to determine the chromosome content and assign genome assemblies to chromosomes, thus bridging the gap between cytogenetics and genomics. The aim of this paper is to describe how ChromSeq can support the study of vertebrate genome evolution and how it can help link cytogenetic and genomic data. We show key examples of ChromSeq application in the refinement of vertebrate genome assemblies and in the study of vertebrate chromosome and karyotype evolution. We also provide a general overview of the approach and a concrete example of genome refinement using this method in the species Anolis carolinensis.


Asunto(s)
Cromosomas/genética , Análisis Citogenético/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Vertebrados/genética , Animales
17.
Front Genet ; 12: 694866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504514

RESUMEN

Trichechus manatus and Trichechus inunguis are the two Sirenia species that occur in the Americas. Despite their increasing extinction risk, many aspects of their biology remain understudied, including the repetitive DNA fraction of their genomes. Here we used the sequenced genome of T. manatus and TAREAN to identify satellite DNAs (satDNAs) in this species. We report the first description of TMAsat, a satDNA comprising ~0.87% of the genome, with ~684bp monomers and centromeric localization. In T. inunguis, TMAsat showed similar monomer length, chromosome localization and conserved CENP-B box-like motifs as in T. manatus. We also detected this satDNA in the Dugong dugon and in the now extinct Hydrodamalis gigas genomes. The neighbor-joining tree shows that TMAsat sequences from T. manatus, T. inunguis, D. dugon, and H. gigas lack species-specific clusters, which disagrees with the predictions of concerted evolution. We detected a divergent TMAsat-like homologous sequence in elephants and hyraxes, but not in other mammals, suggesting this sequence was already present in the common ancestor of Paenungulata, and later became a satDNA in the Sirenians. This is the first description of a centromeric satDNA in manatees and will facilitate the inclusion of Sirenia in future studies of centromeres and satDNA biology.

18.
Sci Rep ; 10(1): 13501, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764555

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Sci Rep ; 10(1): 19202, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154538

RESUMEN

Choloepus, the only extant genus of the Megalonychidae family, is composed of two living species of two-toed sloths: Choloepus didactylus and C. hoffmanni. In this work, we identified and characterized the main satellite DNAs (satDNAs) in the sequenced genomes of these two species. SATCHO1, the most abundant satDNA in both species, is composed of 117 bp tandem repeat sequences. The second most abundant satDNA, SATCHO2, is composed of ~ 2292 bp tandem repeats. Fluorescence in situ hybridization in C. hoffmanni revealed that both satDNAs are located in the centromeric regions of all chromosomes, except the X. In fact, these satDNAs present some centromeric characteristics in their sequences, such as dyad symmetries predicted to form secondary structures. PCR experiments indicated the presence of SATCHO1 sequences in two other Xenarthra species: the tree-toed sloth Bradypus variegatus and the anteater Myrmecophaga tridactyla. Nevertheless, SATCHO1 is present as large tandem arrays only in Choloepus species, thus likely representing a satDNA exclusively in this genus. Our results reveal interesting features of the satDNA landscape in Choloepus species with the potential to aid future phylogenetic studies in Xenarthra and mammalian genomes in general.


Asunto(s)
ADN Satélite/genética , Perezosos/genética , Animales , Genoma , Filogenia
20.
Sci Rep ; 10(1): 7783, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385398

RESUMEN

The genus Saimiri is a decades-long taxonomic and phylogenetic puzzle to which cytogenetics has contributed crucial data. All Saimiri species apparently have a diploid number of 2n = 44 but vary in the number of chromosome arms. Repetitive sequences such as satellite DNAs are potentially informative cytogenetic markers because they display high evolutionary rates. Our goal is to increase the pertinent karyological data by more fully characterizing satellite DNA sequences in the Saimiri genus. We were able to identify two abundant satellite DNAs, alpha (~340 bp) and CapA (~1,500 bp), from short-read clustering of sequencing datasets from S. boliviensis. The alpha sequences comprise about 1% and the CapA 2.2% of the S. boliviensis genome. We also mapped both satellite DNAs in S. boliviensis, S. sciureus, S. vanzolinii, and S. ustus. The alpha has high interspecific repeat homogeneity and was mapped to the centromeres of all analyzed species. CapA is associated with non-pericentromeric heterochromatin and its distribution varies among Saimiri species. We conclude that CapA genomic distribution and its pervasiveness across Platyrrhini makes it an attractive cytogenetic marker for Saimiri and other New World monkeys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA