Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(1): 661-73, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20974844

RESUMEN

We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel ß-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel ß-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.


Asunto(s)
Secuencia Conservada , Drosophila melanogaster , Evolución Molecular , Insulina/química , Insulina/metabolismo , Proteínas/química , Proteínas/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/metabolismo , Cristalografía por Rayos X , Femenino , Humanos , Insulina/farmacología , Radioisótopos de Yodo , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas/farmacología , Ratas , Receptor de Insulina/metabolismo , Trehalosa/metabolismo
2.
Endocrinology ; 149(3): 1113-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18063691

RESUMEN

Insulin-like peptide 3 (INSL3) binds to a G protein-coupled receptor (GPCR) called relaxin family peptide receptor 2 (RXFP2). RXFP2 belongs to the leucine-rich repeat-containing subgroup (LGR) of class A GPCRs. Negative cooperativity has recently been demonstrated in other members of the LGR subgroup. In this work, the kinetics of INSL3 binding to HEK293 cells stably transfected with RXFP2 (HEK293-RXFP2) have been investigated in detail to study whether negative cooperativity occurs and whether this receptor functions as a dimer. Our results show that negative cooperativity is present and that INSL3-RXFP2 binding shows both similarities and differences with insulin binding to the insulin receptor. A dose-response curve for the negative cooperativity of INSL3 binding had a reverse bell shape reminiscent of that seen for the negative cooperativity of insulin binding to its receptor. This suggests that binding of INSL3 may happen in a trans rather than in a cis way in a receptor dimer. Bioluminescence resonance energy transfer (BRET(2)) experiments confirmed that RXFP2 forms constitutive homodimers. Heterodimerization between RXFP2 and RXFP1 was also observed.


Asunto(s)
Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular , Dimerización , Humanos , Mediciones Luminiscentes , Unión Proteica , Temperatura , Transfección
3.
Mol Cell Endocrinol ; 296(1-2): 10-7, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-18723073

RESUMEN

H2 relaxin, a member of the insulin superfamily, binds to the G-protein-coupled receptor RXFP1 (relaxin family peptide 1), a receptor that belongs to the leucine-rich repeat (LRR)-containing subgroup (LGRs) of class A GPCRs. We recently demonstrated negative cooperativity in INSL3 binding to RXFP2 and showed that this subgroup of GPCRs functions as constitutive dimers. In this work, we investigated whether the binding of H2 relaxin to RXFP1 also shows negative cooperativity, and whether this receptor functions as a dimer using BRET(2). Both binding and dissociation were temperature dependent, and the pH optimum for binding was pH 7.0. Our results showed that RXFP1 is a constitutive dimer with negative cooperativity in ligand binding, that dimerization occurs through the 7TM domain, and that the ectodomain has a stabilizing effect on this interaction. Dimerization and negative cooperativity appear to be general properties of LGRs involved in reproduction as well as other GPCRs.


Asunto(s)
Unión Competitiva/fisiología , Multimerización de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Radioisótopos de Yodo/farmacocinética , Concentración Osmolar , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Péptidos/fisiología , Relaxina/química , Relaxina/farmacocinética , Relaxina/fisiología , Especificidad por Sustrato , Temperatura
4.
Endocr Relat Cancer ; 19(4): 557-74, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22685267

RESUMEN

Recent evidence suggests that type II diabetes is associated with increased risk and/or aggressive behavior of several cancers, including those arising from the colon. Concerns have been raised that endogenous hyperinsulinemia and/or exogenous insulin and insulin analogs might stimulate proliferation of neoplastic cells. However, the mechanisms underlying possible growth-promoting effects of insulin and insulin analogs in cancer cells in vivo, such as changes in gene expression, are incompletely described. We observed that administration of the insulin analog X10 significantly increased tumor growth and proliferation in a murine colon cancer model (MC38 cell allografts). Insulin and X10 altered gene expression in MC38 tumors in a similar fashion, but X10 was more potent in terms of the number of genes influenced and the magnitude of changes in gene expression. Many of the affected genes were annotated to metabolism, nutrient uptake, and protein synthesis. Strikingly, expression of genes encoding enzymes in the serine synthesis pathway, recently shown to be critical for neoplastic proliferation, was increased following treatment with insulin and X10. Using stable isotopic tracers and mass spectrometry, we confirmed that insulin and X10 increased glucose contribution to serine synthesis in MC38 cells. The data demonstrate that the tumor growth-promoting effects of insulin and X10 are associated with changes in expression of genes involved in cellular energy metabolism and reveal previously unrecognized effects of insulin and X10 on serine synthesis.


Asunto(s)
Carcinoma/patología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Insulina/análogos & derivados , Insulina/farmacología , Redes y Vías Metabólicas/fisiología , Serina/biosíntesis , Animales , Carcinoma/genética , Carcinoma/metabolismo , Línea Celular Tumoral , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Serina/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Ann N Y Acad Sci ; 1160: 45-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19416158

RESUMEN

The insulin/relaxin superfamily of peptide hormones comprises 10 members in humans. The three members of the insulin-related subgroup bind to receptor tyrosine kinases (RTKs), while four of the seven members of the relaxin-like subgroup are now known to bind to G-protein-coupled receptors (GPCRs), the so-called relaxin family peptide receptors (RXFPs). Both systems have a long evolutionary history and play a critical role in fundamental biological processes, such as metabolism, growth, survival and longevity, and reproduction. The structural biology and ligand-binding kinetics of the insulin and insulin-like growth factor I receptors have been studied in great detail, culminating in the recent crystal structure of the insulin receptor extracellular domain. Some of the fundamental properties of these receptors, including constitutive dimerization and negative cooperativity, have recently been shown to extend to other RTKs and GPCRs, including RXFPs, confirming kinetic observations made over 30 years ago.


Asunto(s)
Insulina/química , Insulina/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/química , Relaxina/metabolismo , Regulación Alostérica , Humanos , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína
6.
Ann N Y Acad Sci ; 1160: 54-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19416159

RESUMEN

Peptides of the relaxin family bind to the relaxin family peptide receptors or RXFPs, members of the G-protein-coupled receptor (GPCR) superfamily. For many years, ligand binding to GPCRs was thought to take place as monomeric complexes, ignoring early evidence of negative cooperativity. However, recent research has shown that most GPCRs form constitutive dimers or larger oligomers. The connection between dimerization and negative cooperativity has now been shown for several GPCRs, including the thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone receptors, which like RXFP1 and -2 belong to the leucine-rich repeat-containing subgroup of class A GPCRs. We recently demonstrated homodimerization and negative cooperativity for RXFP1 and RXFP2 as well as their heterodimerization. Another study showed that RXFP1 has to homodimerize in order to be transported from the endoplasmic reticulum to the cell membrane.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Insulina/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Relaxina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA