Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(21): 4064-4079.e13, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332606

RESUMEN

MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.


Asunto(s)
MicroARNs , Ribonucleasa III , Ratones , Animales , Ribonucleasa III/metabolismo , Interferencia de ARN , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Portadoras/metabolismo , Mamíferos/metabolismo
2.
Cell ; 155(4): 807-16, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209619

RESUMEN

In mammals, a single Dicer participates in biogenesis of small RNAs in microRNA (miRNA) and RNAi pathways. In mice, endogenous RNAi is highly active in oocytes, but not in somatic cells, which we ascribe here to an oocyte-specific Dicer isoform (Dicer(O)). Dicer(O) lacks the N-terminal DExD helicase domain and has higher cleavage activity than the full-length Dicer in somatic cells (Dicer(S)). Unlike Dicer(S), Dicer(O) efficiently produces small RNAs from long double-stranded (dsRNA) substrates. Expression of the Dicer(O) isoform is driven by an intronic MT-C retrotransposon promoter, deletion of which causes loss of Dicer(O) and female sterility. Oocytes from females lacking the MT-C element show meiotic spindle defects and increased levels of endogenous small interfering RNA (endo-siRNA) targets, phenocopying the maternal Dicer null phenotype. The alternative Dicer isoform, whose phylogenetic origin demonstrates evolutionary plasticity of RNA-silencing pathways, is the main determinant of endogenous RNAi activity in the mouse female germline.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Oocitos/metabolismo , ARN Interferente Pequeño/metabolismo , Retroelementos , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Animales , Secuencia de Bases , ARN Helicasas DEAD-box/química , Femenino , Expresión Génica , Infertilidad Femenina , Ratones , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/química , Ribonucleasa III/química
3.
EMBO Rep ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769420

RESUMEN

Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.

4.
EMBO Rep ; 24(7): e57215, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37310138

RESUMEN

RNase III Dicer produces small RNAs guiding sequence-specific regulations, with important biological roles in eukaryotes. Major Dicer-dependent mechanisms are RNA interference (RNAi) and microRNA (miRNA) pathways, which employ distinct types of small RNAs. Small interfering RNAs (siRNAs) for RNAi are produced by Dicer from long double-stranded RNA (dsRNA) as a pool of different small RNAs. In contrast, miRNAs have specific sequences because they are precisely cleaved out from small hairpin precursors. Some Dicer homologs efficiently generate both, siRNAs and miRNAs, while others are adapted for biogenesis of one small RNA type. Here, we review the wealth of recent structural analyses of animal and plant Dicers, which have revealed how different domains and their adaptations contribute to substrate recognition and cleavage in different organisms and pathways. These data imply that siRNA generation was Dicer's ancestral role and that miRNA biogenesis relies on derived features. While the key element of functional divergence is a RIG-I-like helicase domain, Dicer-mediated small RNA biogenesis also documents the impressive functional versatility of the dsRNA-binding domain.


Asunto(s)
MicroARNs , Ribonucleasa III , Animales , Ribonucleasa III/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Bicatenario/genética , Interferencia de ARN
5.
Cardiovasc Diabetol ; 23(1): 223, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943140

RESUMEN

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS: 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS: SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS: Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.


Asunto(s)
Tejido Adiposo , Insuficiencia Cardíaca , Mediadores de Inflamación , Pericardio , Índice de Severidad de la Enfermedad , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Persona de Mediana Edad , Masculino , Femenino , Pericardio/metabolismo , Pericardio/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Resultado del Tratamiento , Mediadores de Inflamación/metabolismo , Volumen Sistólico/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Metabolómica , Biomarcadores/sangre , Tejido Adiposo Epicárdico
6.
EMBO Rep ; 23(2): e53514, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866300

RESUMEN

miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.


Asunto(s)
MicroARNs , Animales , Bovinos , MicroARNs/genética , MicroARNs/metabolismo , Oocitos/metabolismo , Oogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Cigoto/metabolismo
7.
BMC Biol ; 20(1): 272, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482406

RESUMEN

BACKGROUND: Genes, principal units of genetic information, vary in complexity and evolutionary history. Less-complex genes (e.g., long non-coding RNA (lncRNA) expressing genes) readily emerge de novo from non-genic sequences and have high evolutionary turnover. Genesis of a gene may be facilitated by adoption of functional genic sequences from retrotransposon insertions. However, protein-coding sequences in extant genomes rarely lack any connection to an ancestral protein-coding sequence. RESULTS: We describe remarkable evolution of the murine gene D6Ertd527e and its orthologs in the rodent Muroidea superfamily. The D6Ertd527e emerged in a common ancestor of mice and hamsters most likely as a lncRNA-expressing gene. A major contributing factor was a long terminal repeat (LTR) retrotransposon insertion carrying an oocyte-specific promoter and a 5' terminal exon of the gene. The gene survived as an oocyte-specific lncRNA in several extant rodents while in some others the gene or its expression were lost. In the ancestral lineage of Mus musculus, the gene acquired protein-coding capacity where the bulk of the coding sequence formed through CAG (AGC) trinucleotide repeat expansion and duplications. These events generated a cytoplasmic serine-rich maternal protein. Knock-out of D6Ertd527e in mice has a small but detectable effect on fertility and the maternal transcriptome. CONCLUSIONS: While this evolving gene is not showing a clear function in laboratory mice, its documented evolutionary history in Muroidea during the last ~ 40 million years provides a textbook example of how a several common mutation events can support de novo gene formation, evolution of protein-coding capacity, as well as gene's demise.


Asunto(s)
Muridae , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética
8.
Nucleic Acids Res ; 48(14): 8050-8062, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32609824

RESUMEN

MicroRNAs (miRNAs) are ubiquitous small RNAs guiding post-transcriptional gene repression in countless biological processes. However, the miRNA pathway in mouse oocytes appears inactive and dispensable for development. We propose that marginalization of the miRNA pathway activity stems from the constraints and adaptations of RNA metabolism elicited by the diluting effects of oocyte growth. We report that miRNAs do not accumulate like mRNAs during the oocyte growth because miRNA turnover has not adapted to it. The most abundant miRNAs total tens of thousands of molecules in growing (∅ 40 µm) and fully grown (∅ 80 µm) oocytes, a number similar to that observed in much smaller fibroblasts. The lack of miRNA accumulation results in a 100-fold lower miRNA concentration in fully grown oocytes than in somatic cells. This brings a knock-down-like effect, where diluted miRNAs engage targets but are not abundant enough for significant repression. Low-miRNA concentrations were observed in rat, hamster, porcine and bovine oocytes, arguing that miRNA inactivity is not mouse-specific but a common mammalian oocyte feature. Injection of 250,000 miRNA molecules was sufficient to restore reporter repression in mouse and porcine oocytes, suggesting that miRNA inactivity comes from low-miRNA abundance and not from some suppressor of the pathway.


Asunto(s)
MicroARNs/genética , Oocitos/metabolismo , Oogénesis , Células 3T3 , Animales , Bovinos , Células Cultivadas , Cricetinae , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Modelos Teóricos , Oocitos/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie , Porcinos
9.
Nucleic Acids Res ; 48(6): 3211-3227, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956907

RESUMEN

Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1-/- oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.


Asunto(s)
Mitocondrias/genética , Oocitos/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mitocondrial/genética , Animales , Técnicas de Inactivación de Genes , Ratones , Mitocondrias/ultraestructura , Oocitos/crecimiento & desarrollo , Oocitos/ultraestructura , Poliadenilación/genética , Ratas , Transcriptoma/genética
10.
PLoS Genet ; 15(12): e1008261, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31860668

RESUMEN

Germline genome defense evolves to recognize and suppress retrotransposons. One of defensive mechanisms is the PIWI-associated RNA (piRNA) pathway, which employs small RNAs for sequence-specific repression. The loss of the piRNA pathway in mice causes male sterility while females remain fertile. Unlike spermatogenic cells, mouse oocytes posses also RNA interference (RNAi), another small RNA pathway capable of retrotransposon suppression. To examine whether RNAi compensates the loss of the piRNA pathway, we produced a new RNAi pathway mutant DicerSOM and crossed it with a catalytically-dead mutant of Mili, an essential piRNA gene. Normal follicular and oocyte development in double mutants showed that RNAi does not suppress a strong ovarian piRNA knock-out phenotype. However, we observed redundant and non-redundant targeting of specific retrotransposon families illustrating stochasticity of recognition and targeting of invading retrotransposons. Intracisternal A Particle retrotransposon was mainly targeted by the piRNA pathway, MaLR and RLTR10 retrotransposons were targeted mainly by RNAi. Double mutants showed accumulations of LINE-1 retrotransposon transcripts. However, we did not find strong evidence for transcriptional activation and mobilization of retrotransposition competent LINE-1 elements suggesting that while both defense pathways are simultaneously expendable for ovarian oocyte development, yet another transcriptional silencing mechanism prevents mobilization of LINE-1 elements.


Asunto(s)
Oocitos/crecimiento & desarrollo , Interferencia de ARN , ARN Interferente Pequeño/genética , Retroelementos , Animales , Proteínas Argonautas/genética , ARN Helicasas DEAD-box/genética , Femenino , Ratones , Mutación , Oocitos/química , Ribonucleasa III/genética , Transducción de Señal
11.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35055141

RESUMEN

Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.


Asunto(s)
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Corteza Prefrontal/metabolismo , Proteómica/métodos , Nervios Espinales/lesiones , Animales , Cromatografía Liquida , Regulación de la Expresión Génica , Hiperalgesia/etiología , Masculino , Neuralgia/etiología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Factores de Tiempo
12.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077376

RESUMEN

(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Tejido Adiposo/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/cirugía , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirugía , Humanos , Interleucina-6/metabolismo , Pericardio/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638943

RESUMEN

(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.


Asunto(s)
Tejido Adiposo/metabolismo , Compuestos de Bencidrilo/administración & dosificación , Senescencia Celular/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucósidos/administración & dosificación , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Hipoglucemiantes/administración & dosificación , Riñón/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/administración & dosificación , Células 3T3-L1 , Administración Oral , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Dislipidemias/tratamiento farmacológico , Gluconeogénesis/genética , Células Hep G2 , Humanos , Resistencia a la Insulina , Lipogénesis/genética , Masculino , Ratones , Ratas , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
14.
Semin Cell Dev Biol ; 84: 118-126, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233752

RESUMEN

Zygotic genome activation (ZGA) denotes the initiation of gene expression after fertilization. It is part of the complex oocyte-to-embryo transition (OET) in which a highly specialized cell - the oocyte - is fertilized and transformed into a zygote that gives rise to an embryo that will develop into a newborn. From the perspective of gene expression, the OET reflects reprogramming of germ cell gene expression into the new developmental program of the zygote. This reprogramming occurs at transcriptional and post-transcriptional levels. This review will discuss selected aspects of mammalian ZGA, highlighting shared features and evolved differences observed in commonly investigated mammals and non-mammalian model animals.


Asunto(s)
Fertilización/genética , Regulación del Desarrollo de la Expresión Génica/genética , Oocitos/citología , Cigoto/citología , Animales , Embrión de Mamíferos/citología , Humanos , Mamíferos
15.
J Biol Chem ; 294(22): 8676-8689, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30975903

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.


Asunto(s)
Núcleo Celular/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Células 3T3-L1 , Acrilamidas/farmacología , Transporte Activo de Núcleo Celular , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Citoplasma/metabolismo , Células Hep G2 , Histonas/metabolismo , Humanos , Ratones , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/genética , Estrés Oxidativo , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sirtuinas/metabolismo
16.
Genome Res ; 27(8): 1384-1394, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28522611

RESUMEN

Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Oocitos/metabolismo , Retroelementos , Secuencias Repetidas Terminales , Cigoto/metabolismo , Animales , Bovinos , Cricetinae , Retrovirus Endógenos , Humanos , Ratones , Oocitos/citología , Regiones Promotoras Genéticas , Transcripción Genética , Cigoto/citología
17.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396783

RESUMEN

The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.


Asunto(s)
Regulación de la Expresión Génica , Sistema Inmunológico/metabolismo , Receptores Opioides/genética , Analgésicos Opioides/farmacología , Animales , Biomarcadores , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/etiología , Dolor Crónico/metabolismo , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/inmunología , Inflamación/complicaciones , Inflamación/etiología , Inflamación/metabolismo , Receptores Opioides/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
18.
EMBO J ; 34(11): 1523-37, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25896510

RESUMEN

Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3' processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Empalme del ARN/fisiología , Transcripción Genética/fisiología , Cigoto/metabolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Embrión de Mamíferos/citología , Ratones , Cigoto/citología
19.
Langmuir ; 35(35): 11358-11368, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31393734

RESUMEN

Regulation of cell metabolism, membrane fusion, association of proteins with cellular membranes, and cellular signaling altogether would not be possible without Ca2+ ions. The distribution of calcium within the cell is uneven with the negatively charged inner leaflet of the plasma membrane being one of the primary targets of its accumulation. Therefore, we decided to map the influence of Ca2+ on the properties of lipid bilayers closely resembling natural lipid membranes. We combined fluorescence spectroscopy (analysis of time-resolved emission spectra of Laurdan probe and derived parameters: integrated relaxation time related to local lipid mobility, and total emission shift reflecting membrane polarity and hydration) with molecular dynamics simulations to determine the effect of the increasing CaCl2 concentration on model lipid membranes containing POPC, POPS, and cholesterol. On top of that, the impact of calcium on the plasma membranes isolated from HEK293 cells was investigated using the steady-state fluorescence of Laurdan. We found that calcium increases rigidity of all the model lipid membranes used, elevates their thickness, increases lipid packing and ordering, and impedes the local lipid mobility. All these effects were to a great extent similar to those elicited by cholesterol. However, the changes of the membrane properties induced by calcium and cholesterol seem largely independent from each other. At sufficiently high concentrations of calcium or cholesterol, the steric effects hindered a further alteration of membrane organization, i.e., the compressibility limit of membrane structures was reached. We found no indication for mutual interaction between Ca2+ and cholesterol, nor competition of Ca2+ ions and hydroxyl groups of cholesterol for binding to phospholipids. Fluorescence measurements indicated that Ca2+ adsorption decreases mobility within the carbonyl region of model bilayers more efficiently than monovalent ions do (Ca2+ ≫ Li+ > Na+ > K+ > Cs+). The effects of calcium ions were to a great extent mitigated in the plasma membranes isolated from HEK293 cells when compared to the model lipid membranes. Noticeably, the plasma membranes showed remarkably higher resistance toward rigidification induced by calcium ions even when compared with the model membranes containing cholesterol.


Asunto(s)
Calcio/química , Membrana Celular/química , Colesterol/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Biol Reprod ; 99(1): 160-174, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462259

RESUMEN

The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo Embrionario/fisiología , Oocitos/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma , Masculino , Ratones , Folículo Ovárico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA