Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Rheum Dis ; 82(3): 403-415, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564153

RESUMEN

OBJECTIVES: Single-cell level analysis of articular cartilage and meniscus tissues from human healthy and osteoarthritis (OA) knees. METHODS: Single-cell RNA sequencing (scRNA-seq) analyses were performed on articular cartilage and meniscus tissues from healthy (n=6, n=7) and OA (n=6, n=6) knees. Expression of genes of interest was validated using immunohistochemistry and RNA-seq and function was analysed by gene overexpression and depletion. RESULTS: scRNA-seq analyses of human knee articular cartilage (70 972 cells) and meniscus (78 017 cells) identified a pathogenic subset that is shared between both tissues. This cell population is expanded in OA and has strong OA and senescence gene signatures. Further, this subset has critical roles in extracellular matrix (ECM) and tenascin signalling and is the dominant sender of signals to all other cartilage and meniscus clusters and a receiver of TGFß signalling. Fibroblast activating protein (FAP) is also a dysregulated gene in this cluster and promotes ECM degradation. Regulons that are controlled by transcription factor ZEB1 are shared between the pathogenic subset in articular cartilage and meniscus. In meniscus and cartilage cells, FAP and ZEB1 promote expression of genes that contribute to OA pathogenesis, including senescence. CONCLUSIONS: These single-cell studies identified a senescent pathogenic cell cluster that is present in cartilage and meniscus and has FAP and ZEB1 as main regulators which are novel and promising therapeutic targets for OA-associated pathways in both tissues.


Asunto(s)
Cartílago Articular , Menisco , Osteoartritis , Humanos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Osteoartritis/patología , Cartílago Articular/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo
2.
Nucleic Acids Res ; 48(7): 3513-3524, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32095812

RESUMEN

The CFTR gene lies within an invariant topologically associated domain (TAD) demarcated by CTCF and cohesin, but shows cell-type specific control mechanisms utilizing different cis-regulatory elements (CRE) within the TAD. Within the respiratory epithelium, more than one cell type expresses CFTR and the molecular mechanisms controlling its transcription are likely divergent between them. Here, we determine how two extragenic CREs that are prominent in epithelial cells in the lung, regulate expression of the gene. We showed earlier that these CREs, located at -44 and -35 kb upstream of the promoter, have strong cell-type-selective enhancer function. They are also responsive to inflammatory mediators and to oxidative stress, consistent with a key role in CF lung disease. Here, we use CRISPR/Cas9 technology to remove these CREs from the endogenous locus in human bronchial epithelial cells. Loss of either site extinguished CFTR expression and abolished long-range interactions between these sites and the gene promoter, suggesting non-redundant enhancers. The deletions also greatly reduced promoter interactions with the 5' TAD boundary. We show substantial recruitment of RNAPII to the -35 kb element and identify CEBPß as a key activator of airway expression of CFTR, likely through occupancy at this CRE and the gene promoter.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Elementos de Facilitación Genéticos , Mucosa Respiratoria/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Sistemas CRISPR-Cas , Células CACO-2 , Línea Celular , Cromatina/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Células Epiteliales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Eliminación de Secuencia , Transactivadores/metabolismo
3.
J Cell Mol Med ; 23(11): 7726-7740, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31557407

RESUMEN

E74-like factor 5 (ELF5) and ETS-homologous factor (EHF) are epithelial selective ETS family transcription factors (TFs) encoded by genes at chr11p13, a region associated with cystic fibrosis (CF) lung disease severity. EHF controls many key processes in lung epithelial function so its regulatory mechanisms are important. Using CRISPR/Cas9 technology, we removed three key cis-regulatory elements (CREs) from the chr11p13 region and also activated multiple open chromatin sites with CRISPRa in airway epithelial cells. Deletion of the CREs caused subtle changes in chromatin architecture and site-specific increases in EHF and ELF5. CRISPRa had most effect on ELF5 transcription. ELF5 levels are low in airway cells but higher in LNCaP (prostate) and T47D (breast) cancer cells. ATAC-seq in these lines revealed novel peaks of open chromatin at the 5' end of chr11p13 associated with an expressed ELF5 gene. Furthermore, 4C-seq assays identified direct interactions between the active ELF5 promoter and sites within the EHF locus, suggesting coordinate regulation between these TFs. ChIP-seq for ELF5 in T47D cells revealed ELF5 occupancy within EHF introns 1 and 6, and siRNA-mediated depletion of ELF5 enhanced EHF expression. These results define a new role for ELF5 in lung epithelial biology.


Asunto(s)
Cromosomas Humanos Par 11/genética , Fibrosis Quística/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genes Modificadores , Factores de Transcripción/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos , Humanos , Intrones/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Factores de Transcripción/metabolismo
4.
bioRxiv ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38370845

RESUMEN

Single cell RNA sequencing technology has been dramatically changing how gene expression studies are performed. However, its use has been limited to identifying subtypes of cells by comparing cells' gene expression levels in an unbiased manner to produce a 2D plot (e.g., UMAP/tSNE). We developed a new method of placing cells in 2D space. This system, called vSPACE, shows a virtual spatial representation of scRNAseq data obtained from human articular cartilage by emulating the concept of spatial transcriptomics technology, but virtually. This virtual 2D plot presentation of human articular cartage cells generates several zonal distribution patterns, in one or multiple genes at a time, reveling patterns that scientists can appreciate as imputed spatial distribution patterns along the zonal axis. The discovered patterns are explainable and remarkably consistent across all six healthy doners despite their respectively different clinical variables (age and sex), suggesting the confidence of the discovered patterns.

5.
Adv Sci (Weinh) ; 11(17): e2309032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403470

RESUMEN

Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFß/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Anillo Fibroso/metabolismo , Anillo Fibroso/patología , Masculino , Persona de Mediana Edad , Femenino , Adulto , Disco Intervertebral/metabolismo , Disco Intervertebral/patología
6.
Front Cell Dev Biol ; 11: 1208315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457300

RESUMEN

Objectives: RNA-binding proteins (RBPs) have diverse and essential biological functions, but their role in cartilage health and disease is largely unknown. The objectives of this study were (i) map the global landscape of RBPs expressed and enriched in healthy cartilage and dysregulated in osteoarthritis (OA); (ii) prioritize RBPs for their potential role in cartilage and in OA pathogenesis and as therapeutic targets. Methods: Our published bulk RNA-sequencing (RNA-seq) data of healthy and OA human cartilage, and a census of 1,542 RBPs were utilized to identify RBPs that are expressed in healthy cartilage and differentially expressed (DE) in OA. Next, our comparison of healthy cartilage RNA-seq data to 37 transcriptomes in the Genotype-Tissue Expression (GTEx) database was used to determine RBPs that are enriched in cartilage. Finally, expression of RBPs was analyzed in our single cell RNA-sequencing (scRNA-seq) data from healthy and OA human cartilage. Results: Expression of RBPs was higher than nonRBPs in healthy cartilage. In OA cartilage, 188 RBPs were differentially expressed, with a greater proportion downregulated. Ribosome biogenesis was enriched in the upregulated RBPs, while splicing and transport were enriched in the downregulated. To further prioritize RBPs, we selected the top 10% expressed RBPs in healthy cartilage and those that were cartilage-enriched according to GTEx. Intersecting these criteria, we identified Tetrachlorodibenzodioxin (TCDD) Inducible Poly (ADP-Ribose) Polymerase (TIPARP) as a candidate RBP. TIPARP was downregulated in OA. scRNA-seq data revealed TIPARP was most significantly downregulated in the "pathogenic cluster". Conclusion: Our global analyses reveal expression patterns of RBPs in healthy and OA cartilage. We also identified TIPARP and other RBPs as novel mediators in OA pathogenesis and as potential therapeutic targets.

7.
Genes (Basel) ; 10(3)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893953

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional (3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be considered. In this review, we focus on the higher order chromatin organization required for normal CFTR locus function, together with the complex mechanisms controlling expression of the gene in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized into an invariant topologically associated domain (TAD) established by the architectural proteins CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD also recruit these factors. Although the CFTR promoter is required for basal levels of expression, cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and temporal coordination of CFTR transcription. These CREs are recruited to the promoter through chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR locus should be considered when designing gene-editing approaches, since failure to recognize their importance may disrupt gene expression and reduce the efficacy of therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Edición Génica , Regulación de la Expresión Génica , Sitios Genéticos , Humanos , Especificidad de Órganos , Regiones Promotoras Genéticas , Dominios Proteicos , Cohesinas
8.
PLoS One ; 12(9): e0184950, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28910410

RESUMEN

The sensory and physiological inputs which govern the larval-pupal transition in Drosophila, and the neuronal circuity that integrates them, are complex. Previous work from our laboratory identified a dosage-sensitive genetic interaction between the genes encoding the Rho-GEF Trio and the zinc-finger transcription factor Sequoia that interfered with the larval-pupal transition. Specifically, we reported heterozygous mutations in sequoia (seq) dominantly exacerbated the trio mutant phenotype, and this seq-enhanced trio mutant genotype blocked the transition of third instar larvae from foragers to wanderers, a requisite behavioral transition prior to pupation. In this work, we use the GAL4-UAS system to rescue this phenotype by tissue-specific trio expression. We find that expressing trio in the class IV dendritic arborization (da) sensory neurons rescues the larval-pupal transition, demonstrating the reliance of the larval-pupal transition on the integrity of these sensory neurons. As nociceptive responses also rely on the functionality of the class IV da neurons, we test mechanical nociceptive responses in our mutant and rescued larvae and find that mechanical nociception is separable from the ability to undergo the larval-pupal transition. This demonstrates for the first time that the roles of the class IV da neurons in governing two critical larval behaviors, the larval-pupal transition and mechanical nociception, are functionally separable from each other.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas del Tejido Nervioso/genética , Nocicepción/fisiología , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Células Receptoras Sensoriales/fisiología , Animales , Conducta Animal , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Larva/fisiología , Masculino , Mutación , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Especificidad de Órganos , Fenotipo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pupa/fisiología , Células Receptoras Sensoriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA