Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Angew Chem Int Ed Engl ; 60(42): 22640-22645, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34383389

RESUMEN

Recent improvements in mRNA display have enabled the selection of peptides that incorporate non-natural amino acids, thus expanding the chemical diversity of macrocycles beyond what is accessible in nature. Such libraries have incorporated non-natural amino acids at the expense of natural amino acids by reassigning their codons. Here we report an alternative approach to expanded amino-acid diversity that preserves all 19 natural amino acids (no methionine) and adds 6 non-natural amino acids, resulting in the highest sequence complexity reported to date. We have applied mRNA display to this 25-letter library to select functional macrocycles that bind human STING, a protein involved in immunoregulation. The resulting STING-binding peptides include a 9-mer macrocycle with a dissociation constant (KD ) of 3.4 nM, which blocks binding of cGAMP to STING and induces STING dimerization. This approach is generalizable to expanding the amino-acid alphabet in a library beyond 25 building blocks.


Asunto(s)
Proteínas de la Membrana/metabolismo , Péptidos Cíclicos/metabolismo , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Codón , AMP Cíclico/química , AMP Cíclico/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Dimerización , Ingeniería Genética , Humanos , Cinética , Proteínas de la Membrana/química , Biblioteca de Péptidos , Péptidos Cíclicos/química , ARN Mensajero/genética
2.
Mol Syst Biol ; 6: 414, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20865007

RESUMEN

Allosteric coupling between protein domains is fundamental to many cellular processes. For example, Hsp70 molecular chaperones use ATP binding by their actin-like N-terminal ATPase domain to control substrate interactions in their C-terminal substrate-binding domain, a reaction that is critical for protein folding in cells. Here, we generalize the statistical coupling analysis to simultaneously evaluate co-evolution between protein residues and functional divergence between sequences in protein sub-families. Applying this method in the Hsp70/110 protein family, we identify a sparse but structurally contiguous group of co-evolving residues called a 'sector', which is an attribute of the allosteric Hsp70 sub-family that links the functional sites of the two domains across a specific interdomain interface. Mutagenesis of Escherichia coli DnaK supports the conclusion that this interdomain sector underlies the allosteric coupling in this protein family. The identification of the Hsp70 sector provides a basis for further experiments to understand the mechanism of allostery and introduces the idea that cooperativity between interacting proteins or protein domains can be mediated by shared sectors.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sitio Alostérico , Fenómenos Fisiológicos Bacterianos , Dicroismo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Estadísticos , Conformación Molecular , Mutagénesis , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
3.
Curr Opin Struct Biol ; 16(1): 102-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16423525

RESUMEN

It is becoming increasingly clear that the fundamental capacity to undergo conformational change in response to ligand binding is intrinsic to proteins. This property confers on proteins the ability to be allosterically modulated in order to shift substrate binding affinities, alter enzymatic activity or regulate protein-protein interaction. How this allosteric modulation occurs--the pathways of communication, the shifting of conformational ensembles and the altered molecular dynamics--has received considerable attention during the past two years. Recent progress has helped outline the molecular origins of allostery in proteins as diverse as Hsp70 molecular chaperones and signal integrating proteins, such as WASP. In addition, allosteric properties have been successfully engineered into proteins for drug design or the development of novel biosensors. Methodological advances have provided exciting prospects for new insights and new biological roles of allosteric systems have been uncovered.


Asunto(s)
Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Conformación Proteica , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Thermus thermophilus/fisiología
4.
Mol Cell ; 26(1): 27-39, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17434124

RESUMEN

Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.


Asunto(s)
Regulación Alostérica , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Ligandos , Adenosina Difosfato/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Medición de Intercambio de Deuterio , Proteínas de Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Químicos , Nucleótidos/química , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
5.
J Biol Chem ; 281(3): 1605-11, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16275641

RESUMEN

The Hsp70 family of molecular chaperones acts to prevent protein misfolding, import proteins into organelles, unravel protein aggregates, and enhance cell survival under stress conditions. These activities are all mediated by recognition of diverse hydrophobic sequences via a C-terminal substrate-binding domain. ATP-binding/hydrolysis by the N-terminal ATPase domain regulates the interconversion of the substrate-binding domain between low and high affinity conformations. The empty state of the substrate-binding domain has been difficult to study because of its propensity to bind nearly any available protein chain, even if only modestly hydrophobic. We have generated a new stable construct of the substrate-binding domain from the Escherichia coli Hsp70, DnaK, which has enabled us to compare the empty and peptide-bound conformations using NMR chemical shift analysis and hydrogen-deuterium exchange. We have determined that the empty state is, overall, quite similar to the peptide-bound state, contrary to a previous report. Peptide binding leads to a subtle alteration in the packing of the alpha-helical lid relative to the beta-subdomain. Significantly, we have shown that the chemical shifts of the substrate-binding domain and the ATPase domain do not change when they are placed together in a two-domain construct, whether or not peptide is bound, suggesting that, in the absence of nucleotide, the two domains of E. coli DnaK do not interact. We conclude that the isolated substrate-binding domain exists in a stable high affinity state in the absence of influence from a nucleotide-bound ATPase domain.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitios de Unión , Clonación Molecular , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia
6.
J Biol Chem ; 277(52): 50985-90, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12397065

RESUMEN

SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of the preprotein. SecA is proposed to undergo major conformational changes during translocation. These conformational changes are accompanied by major rearrangements of SecA structural domains. To understand the interdomain rearrangements, we have examined SecA by NMR and identified regions that display narrow resonances indicating high mobility. The mobile regions of SecA have been assigned to a sequence from the second of two domains with nucleotide-binding folds (NBF-II; residues 564-579) and to the extreme C-terminal segment of SecA (residues 864-901), both of which are essential for preprotein translocation activity. Interactions with ligands suggest that the mobile regions are involved in functionally critical regulatory steps in SecA.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Dimerización , Proteínas de Escherichia coli/metabolismo , Variación Genética , Espectroscopía de Resonancia Magnética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC , Proteína SecA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA