Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Pathol ; 186(6): 1610-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27070822

RESUMEN

Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evan's Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.


Asunto(s)
Anexina A6/metabolismo , Proteínas de la Membrana/deficiencia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Animales , Anexina A6/genética , Disferlina , Immunoblotting , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Distrofia Muscular Animal/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Sarcolema/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(16): 6004-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24717843

RESUMEN

Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Asunto(s)
Anexina A6/metabolismo , Distrofia Muscular Animal/patología , Sarcolema/metabolismo , Sarcolema/patología , Cicatrización de Heridas , Músculos Abdominales/patología , Empalme Alternativo/genética , Animales , Anexina A6/genética , Cromosomas de los Mamíferos/genética , Susceptibilidad a Enfermedades , Genes Modificadores , Variación Genética , Ventrículos Cardíacos/patología , Espacio Intracelular/metabolismo , Membranas/patología , Ratones , Ratones Endogámicos C57BL , Distrofia Muscular Animal/genética , Tamaño de los Órganos , Transporte de Proteínas , Sitios de Carácter Cuantitativo/genética , Cicatrización de Heridas/genética
3.
Dev Biol ; 387(2): 179-90, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24440153

RESUMEN

EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton.


Asunto(s)
Desarrollo de Músculos/genética , Músculo Cuádriceps/embriología , Músculo Cuádriceps/crecimiento & desarrollo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Músculo Cuádriceps/metabolismo , Sarcolema/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
4.
Am J Pathol ; 184(1): 248-59, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24177035

RESUMEN

Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy.


Asunto(s)
Glicerol/metabolismo , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Distrofias Musculares/patología , Animales , Modelos Animales de Enfermedad , Disferlina , Femenino , Glicerol/toxicidad , Immunoblotting , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo
5.
Breast Cancer Res Treat ; 137(2): 373-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23224145

RESUMEN

Metastasis remains a significant challenge in treating cancer. A better understanding of the molecular mechanisms underlying metastasis is needed to develop more effective treatments. Here, we show that human breast tumor biomarker miR-30c regulates invasion by targeting the cytoskeleton network genes encoding twinfilin 1 (TWF1) and vimentin (VIM). Both VIM and TWF1 have been shown to regulate epithelial-to-mesenchymal transition. Similar to TWF1, VIM also regulates F-actin formation, a key component of cellular transition to a more invasive mesenchymal phenotype. To further characterize the role of the TWF1 pathway in breast cancer, we found that IL-11 is an important target of TWF1 that regulates breast cancer cell invasion and STAT3 phosphorylation. The miR-30c-VIM/TWF1 signaling cascade is also associated with clinical outcome in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Citoesqueleto/genética , MicroARNs/genética , Proteínas de Microfilamentos/genética , Proteínas Tirosina Quinasas/genética , Vimentina/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Citoesqueleto/patología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Ratones , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/metabolismo , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Cell Biol ; 213(6): 705-18, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27298325

RESUMEN

Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5, and A6 formed a tight repair "cap." Actin was recruited to the site of damage, and annexin A6 cap formation was both actin dependent and Ca(2+) regulated. Repair proteins, including dysferlin, EHD1, EHD2, MG53, and BIN1, localized adjacent to the repair cap in a "shoulder" region enriched with phosphatidlyserine. Dye influx into muscle fibers lacking both dysferlin and the related protein myoferlin was substantially greater than control or individual null muscle fibers, underscoring the importance of shoulder-localized proteins. These data define the cap and shoulder as subdomains within the repair complex accumulating distinct and nonoverlapping components.


Asunto(s)
Actinas/metabolismo , Anexinas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Animales , Calcio/metabolismo , Ratones , Transporte de Proteínas/fisiología , Sarcolema/metabolismo , Cicatrización de Heridas/fisiología
7.
PLoS One ; 10(9): e0136679, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26325203

RESUMEN

We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Proteínas de Transporte Vesicular/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Creatina Quinasa/metabolismo , Heterocigoto , Masculino , Ratones , Enfermedades Musculares/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Supresoras de Tumor/fisiología
8.
Nat Commun ; 4: 1393, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340433

RESUMEN

Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. Epithelial-to-mesenchymal transition has been shown to correlate with therapy resistance, but the functional link and signalling pathways remain to be elucidated. Here we report that microRNA-30c, a human breast tumour prognostic marker, has a pivotal role in chemoresistance by a direct targeting of the actin-binding protein twinfilin 1, which promotes epithelial-to-mesenchymal transition. An interleukin-6 family member, interleukin-11 is identified as a secondary target of twinfilin 1 in the microRNA-30c signalling pathway. Expression of microRNA-30c inversely correlates with interleukin-11 expression in primary breast tumours and low interleukin-11 correlates with relapse-free survival in breast cancer patients. Our study demonstrates that microRNA-30c is transcriptionally regulated by GATA3 in breast tumours. Identification of a novel microRNA-mediated pathway that regulates chemoresistance in breast cancer will facilitate the development of novel therapeutic strategies.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Interleucina-11/metabolismo , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Análisis por Conglomerados , Citoesqueleto/efectos de los fármacos , Citoesqueleto/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-11/genética , Ratones , Proteínas de Microfilamentos/genética , Pronóstico , Proteínas Tirosina Quinasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Supresión Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA