Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 25(16): 1674-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21852532

RESUMEN

We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.


Asunto(s)
Redes Reguladoras de Genes , Páncreas Exocrino/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética , Animales , Antineoplásicos Hormonales/farmacología , Secuencia de Bases , Western Blotting , Inmunoprecipitación de Cromatina , Regulación hacia Abajo/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Lipasa/genética , Lipasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Páncreas Exocrino/efectos de los fármacos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tamoxifeno/farmacología , Factores de Transcripción/metabolismo
2.
Development ; 141(16): 3123-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063451

RESUMEN

The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.


Asunto(s)
Células Acinares/citología , Regulación del Desarrollo de la Expresión Génica , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Receptores Citoplasmáticos y Nucleares/fisiología , Células Madre/citología , Animales , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Masculino , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Receptores Citoplasmáticos y Nucleares/genética , Transgenes
3.
PLoS One ; 18(10): e0291512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796967

RESUMEN

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.


Asunto(s)
Páncreas Exocrino , Neoplasias Pancreáticas , Ratones , Animales , Células Acinares/metabolismo , Epitelio/metabolismo , Factores de Transcripción/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Fenotipo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
4.
Gastroenterology ; 139(1): 270-80, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20398665

RESUMEN

BACKGROUND & AIMS: The mature pancreatic acinar cell is dedicated to the production of very large amounts of digestive enzymes. The early stages of pancreatic development require the Rbpj form of the trimeric Pancreas Transcription Factor 1 complex (PTF1-J). As acinar development commences, Rbpjl gradually replaces Rbpj; in the mature pancreas, PTF1 contains Rbpjl (PTF1-L). We investigated whether PTF1-L controls the expression of genes that complete the final stage of acinar differentiation. METHODS: We analyzed acinar development and transcription in mice with disrupted Rbpjl (Rbpjl(ko/ko) mice). We performed comprehensive analyses of the messenger RNA population and PTF1 target genes in pancreatic acinar cells from these and wild-type mice. RESULTS: In Rbpjl(ko/ko) mice, acinar differentiation was incomplete and characterized by decreased expression (as much as 99%) of genes that encode digestive enzymes or proteins of regulated exocytosis and mitochondrial metabolism. Whereas PTF1-L bound regulatory sites of genes in normal adult pancreatic cells, the embryonic form (PTF1-J) persisted in the absence of Rbpjl and replaced PTF1-L; the extent of replacement determined gene expression levels. Loss of PTF1-L reduced expression (>2-fold) of only about 50 genes, 90% of which were direct targets of PTF1-L. The magnitude of the effects on individual digestive enzyme genes correlated with the developmental timing of gene activation. Absence of Rbpjl increased pancreatic expression of liver-restricted messenger RNA. CONCLUSIONS: Replacement of Rbpj by Rbpjl in the PTF1 complex drives acinar differentiation by maximizing secretory protein synthesis, stimulating mitochondrial metabolism and cytoplasmic creatine-phosphate energy stores, completing the packaging and secretory apparatus, and maintaining acinar-cell homeostasis.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Páncreas Exocrino/citología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Hígado/metabolismo , Ratones , Ratones Noqueados , Fenotipo , ARN Mensajero/análisis
5.
J Neurosci ; 29(36): 11139-48, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741120

RESUMEN

Ptf1a, along with an E protein and Rbpj, forms the transcription factor complex PTF1-J that is essential for proper specification of inhibitory neurons in the spinal cord, retina, and cerebellum. Here we show that two highly conserved noncoding genomic regions, a distal 2.3 kb sequence located 13.4 kb 5' and a 12.4 kb sequence located immediately 3' of the Ptf1a coding region, have distinct activity in controlling Ptf1a expression in all of these domains. The 5' 2.3 kb sequence functions as an autoregulatory element and directs reporter gene expression to all Ptf1a domains in the developing nervous system. The autoregulatory activity of this element was demonstrated by binding of the PTF1-J complex in vitro, Ptf1a localization to this genomic region in vivo, and the in vivo requirement of Ptf1a for the activity of the regulatory element in transgenic mice. In contrast, the 12.4 kb 3' regulatory region does not contain any conserved PTF1 sites, and its expression in transgenic mice is independent of Ptf1a. Thus, regulatory information for initiation of Ptf1a expression in the developing nervous system is located within the 12.4 kb sequence 3' of the Ptf1a gene. Together, these results identify multiple transcriptional mechanisms that control Ptf1a levels, one modulating levels by autoregulation through the PTF1-J complex, and the other a Ptf1a-independent mechanism for initial activation.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/fisiología , Homeostasis/genética , Neurogénesis/genética , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Embrión de Pollo , Retroalimentación Fisiológica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo
6.
Mol Cell Biol ; 26(1): 117-30, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354684

RESUMEN

PTF1 is a trimeric transcription factor essential to the development of the pancreas and to the maintenance of the differentiated state of the adult exocrine pancreas. It comprises a dimer of P48/PTF1a (a pancreas and neural restricted basic helix-loop-helix [bHLH] protein) and a class A bHLH protein, together with a third protein that we show can be either the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. In mature acinar cells, PTF1 exclusively contains the RBP-L isoform and is bound to the promoters of acinar specific genes. P48 interacts with the RBP subunit primarily through two short conserved tryptophan-containing motifs, similar to the motif of the Notch intracellular domain (NotchIC) that interacts with RBP-J. The transcriptional activities of the J and L forms of PTF1 are independent of Notch signaling, because P48 occupies the NotchIC docking site on RBP-J and RBP-L does not bind the NotchIC. Mutations that delete one or both of the RBP-interacting motifs of P48 eliminate RBP-binding and are associated with a human genetic disorder characterized by pancreatic and cerebellar agenesis, which indicates that the association of P48 and RBPs is required for proper embryonic development. The presence of related peptide motifs in other transcription factors indicates a broader Notch-independent function for RBPJ/SU(H).


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Secuencias Hélice-Asa-Hélice , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Páncreas/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/genética , Secuencias Hélice-Asa-Hélice/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Datos de Secuencia Molecular , Receptores Notch/genética , Receptores Notch/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Transcripción Genética
7.
Mol Cell Biol ; 23(19): 6713-24, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12972592

RESUMEN

Liver receptor homolog 1 (LRH-1) and pancreatic-duodenal homeobox 1 (PDX-1) are coexpressed in the pancreas during mouse embryonic development. Analysis of the regulatory region of the human LRH-1 gene demonstrated the presence of three functional binding sites for PDX-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed that PDX-1 bound to the LRH-1 promoter, both in cultured cells in vitro and during pancreatic development in vivo. Retroviral expression of PDX-1 in pancreatic cells induced the transcription of LRH-1, whereas reduced PDX-1 levels by RNA interference attenuated its expression. Consistent with direct regulation of LRH-1 expression by PDX-1, PDX-1(-/-) mice expressed smaller amounts of LRH-1 mRNA in the embryonic pancreas. Taken together, our data indicate that PDX-1 controls LRH-1 expression and identify LRH-1 as a novel downstream target in the PDX-1 regulatory cascade governing pancreatic development, differentiation, and function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Hígado/metabolismo , Páncreas/embriología , Receptores Citoplasmáticos y Nucleares/genética , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Páncreas/metabolismo , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/genética , Células Tumorales Cultivadas
8.
Gene Expr Patterns ; 6(7): 678-86, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16487753

RESUMEN

A global survey of RNA from 14 fetal and 12 adult human organs by RT-PCR determined the expression patterns of 790 genes encoding DNA-binding transcription factors. The data can be sorted to identify sets of transcription factors with expression relatively restricted to a given organ or to particular organ groups. These data are a resource to help define the spectrum of transcription factor control, contribute to the elucidation of transcription factor cascades responsible for the development and maintenance of each organ, and provide a baseline to study the effects of disease or developmental defects.


Asunto(s)
Proteínas de Unión al ADN/genética , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Transcripción/genética , Análisis por Conglomerados , ADN Complementario , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Especificidad de Órganos/genética , Organogénesis , ARN Mensajero/análisis , ARN Mensajero/genética
9.
Mol Cell Biol ; 36(23): 2945-2955, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27644326

RESUMEN

Much remains unknown regarding the regulatory networks formed by transcription factors in mature, differentiated mammalian cells in vivo, despite many studies of individual DNA-binding transcription factors. We report a constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell. PTF1 is an atypical basic helix-loop-helix transcription factor complex of pancreatic acinar cells and is critical to acinar cell fate specification and differentiation. MIST1, also a basic helix-loop-helix transcription factor, enhances the formation and maintenance of the specialized phenotype of professional secretory cells. The MIST1 and PTF1 collaboration controls a wide range of specialized cellular processes, including secretory protein synthesis and processing, exocytosis, and homeostasis of the endoplasmic reticulum. PTF1 drives Mist1 transcription, and MIST1 and PTF1 bind and drive the transcription of over 100 downstream acinar genes. PTF1 binds two canonical bipartite sites within a 0.7-kb transcriptional enhancer upstream of Mist1 that are essential for the activity of the enhancer in vivo MIST1 and PTF1 coregulate target genes synergistically or additively, depending on the target transcriptional enhancer. The frequent close binding proximity of PTF1 and MIST1 in pancreatic acinar cell chromatin implies extensive collaboration although the collaboration is not dependent on a stable physical interaction.

10.
Diabetes ; 65(9): 2810-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284104

RESUMEN

Homozygous truncating mutations in the helix-loop-helix transcription factor PTF1A are a rare cause of pancreatic and cerebellar agenesis. The correlation of Ptf1a dosage with pancreatic phenotype in a mouse model suggested the possibility of finding hypomorphic PTF1A mutations in patients with pancreatic agenesis or neonatal diabetes but no cerebellar phenotype. Genome-wide single nucleotide polymorphism typing in two siblings with neonatal diabetes from a consanguineous pedigree revealed a large shared homozygous region (31 Mb) spanning PTF1A Sanger sequencing of PTF1A identified a novel missense mutation, p.P191T. Testing of 259 additional patients using a targeted next-generation sequencing assay for 23 neonatal diabetes genes detected one additional proband and an affected sibling with the same homozygous mutation. All four patients were diagnosed with diabetes at birth and were treated with insulin. Two of the four patients had exocrine pancreatic insufficiency requiring replacement therapy but none of the affected individuals had neurodevelopmental delay. Transient transfection assays of the mutant protein demonstrated a 75% reduction in transactivation activity. This study shows that the functional severity of a homozygous mutation impacts the severity of clinical features found in patients.


Asunto(s)
Páncreas/metabolismo , Factores de Transcripción/genética , Niño , Ensayo de Cambio de Movilidad Electroforética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Mutación/genética , Mutación Missense , Polimorfismo de Nucleótido Simple/genética
11.
Mol Cell Biol ; 36(24): 3033-3047, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697859

RESUMEN

Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by derepression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.


Asunto(s)
Células Acinares/citología , Perfilación de la Expresión Génica/métodos , Páncreas Exocrino/citología , Factores de Transcripción/genética , Transcripción Genética , Células Acinares/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Homeostasis , Ratones , Páncreas Exocrino/metabolismo , Desplegamiento Proteico , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
12.
Dis Model Mech ; 8(10): 1201-11, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26438693

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48(Cre);LSL-Kras(G12D);Cdkn2a(f/f)) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice with KIC mice and show that the Rgs16::GFP transgene is a Kras(G12D)-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Neoplasias Pancreáticas/tratamiento farmacológico , Paclitaxel Unido a Albúmina/farmacología , Paclitaxel Unido a Albúmina/uso terapéutico , Animales , Antineoplásicos/farmacología , Bioensayo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Gemcitabina , Tirosina Quinasa del Receptor Axl , Neoplasias Pancreáticas
13.
Elife ; 42015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26151762

RESUMEN

Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas.


Asunto(s)
Células Acinares/fisiología , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Transdiferenciación Celular , Factores de Transcripción/análisis , Animales , Carcinoma in Situ/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Factores de Transcripción/genética
14.
Mol Cell Biol ; 33(16): 3166-79, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23754747

RESUMEN

The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Tubo Neural/embriología , Páncreas/embriología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cromatina/genética , Secuencia de Consenso , ADN/genética , ADN/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Tubo Neural/metabolismo , Páncreas/metabolismo , Unión Proteica , Factores de Transcripción SOXB1/metabolismo
15.
Prog Mol Biol Transl Sci ; 97: 1-40, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21074728

RESUMEN

Pancreatic acinar cells are highly specialized exocrine factories that produce copious amounts of digestive enzymes for intestinal digestion. Acinar cells arise from a population of multipotent progenitor cells (MPCs) that also produce ductal cells, which channel the acinar secretions to the intestine, and endocrine cells, which populate the islets of Langerhans. During a final stage of differentiation, acinar cells acquire powerful systems for maintaining cellular homeostasis in the face of great demands for protein synthesis and energy production. We summarize the pancreatic transcription factors that guide pancreatic development through the formation of the MPC population, the resolution of acinar, ductal, and islet lineages, the initiation of the acinar developmental program, and the completion of acinar cell differentiation. We discuss the evidence for the specific roles of these factors at each developmental transition and review the plasticity of mature acinar cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Homeostasis/genética , Páncreas Exocrino/embriología , Páncreas Exocrino/metabolismo , Transcripción Genética , Animales , Linaje de la Célula/genética , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Páncreas Exocrino/citología
16.
Mol Cell Biol ; 28(17): 5458-68, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18606784

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor PTF1a is critical to the development of the embryonic pancreas. It is required early for the formation of the undifferentiated tubular epithelium of the nascent pancreatic rudiment and then becomes restricted to the differentiating acinar cells, where it directs the transcriptional activation of the secretory digestive enzyme genes. Here we report that the complex temporal and spatial expression of Ptf1a is controlled by at least three separable gene-flanking regions. A 14.8-kb control domain immediately downstream of the last Ptf1a exon is highly conserved among mammals and directs expression in the dorsal part of the spinal cord but has very little activity in the embryonic or neonatal pancreas. A 13.4-kb proximal promoter domain initiates limited expression in cells that begin the acinar differentiation program. The activity of the proximal promoter domain is complemented by an adjacent 2.3-kb autoregulatory enhancer that is able to activate a heterologous minimal promoter with high-level penetrance in the pancreases of transgenic mice. During embryonic development, the enhancer initiates expression in the early precursor epithelium and then superinduces expression in acinar cells at the onset of their development. The enhancer contains two evolutionarily conserved binding sites for the active form of PTF1a, a trimeric complex composed of PTF1a, one of the common bHLH E proteins, and either RBPJ or RBPJL. The two sites are essential for acinar cell-specific transcription in transfected cell lines and mice. In mature acinar cells, the enhancer and PTF1a establish an autoregulatory loop that reinforces and maintains Ptf1a expression. Indeed, the trimeric PTF1 complex forms dual autoregulatory loops with the Ptf1a and Rbpjl genes that may maintain the stable phenotype of pancreatic acinar cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Factores de Transcripción/genética , Transcripción Genética , Región de Flanqueo 5'/genética , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia Conservada , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos/genética , Epitelio/metabolismo , Humanos , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Páncreas/citología , Regiones Promotoras Genéticas/genética , Unión Proteica , Ratas , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA