Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Bioessays ; 46(5): e2300223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522027

RESUMEN

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.


Asunto(s)
Envejecimiento , Matriz Extracelular , Animales , Humanos , Matriz Extracelular/metabolismo , Reino Unido
2.
Proc Natl Acad Sci U S A ; 120(14): e2210745120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989307

RESUMEN

Cells respond to stress by synthesizing chaperone proteins that seek to correct protein misfolding and maintain function. However, abrogation of protein homeostasis is a hallmark of aging, leading to loss of function and the formation of proteotoxic aggregates characteristic of pathology. Consequently, discovering the underlying molecular causes of this deterioration in proteostasis is key to designing effective interventions to disease or to maintaining cell health in regenerative medicine strategies. Here, we examined primary human mesenchymal stem cells, cultured to a point of replicative senescence and subjected to heat shock, as an in vitro model of the aging stress response. Multi -omics analysis showed how homeostasis components were reduced in senescent cells, caused by dysregulation of a functional network of chaperones, thereby limiting proteostatic competence. Time-resolved analysis of the primary response factors, including those regulating heat shock protein 70 kDa (HSPA1A), revealed that regulatory control is essentially translational. Senescent cells have a reduced capacity for chaperone protein translation and misfolded protein (MFP) turnover, driven by downregulation of ribosomal proteins and loss of the E3 ubiquitin ligase CHIP (C-terminus of HSP70 interacting protein) which marks MFPs for degradation. This limits the cell's stress response and subsequent recovery. A kinetic model recapitulated these reduced capacities and predicted an accumulation of MFP, a hypothesis supported by evidence of systematic changes to the proteomic fold state. These results thus establish a specific loss of regulatory capacity at the protein, rather than transcript, level and uncover underlying systematic links between aging and loss of protein homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Proteómica , Humanos , Envejecimiento , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Biosíntesis de Proteínas , Células Madre Mesenquimatosas/metabolismo
3.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732478

RESUMEN

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Ratones , Humanos , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Aparato de Golgi/metabolismo , Mamíferos/metabolismo
4.
Am J Physiol Cell Physiol ; 325(1): C52-C59, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246635

RESUMEN

The extracellular matrix (ECM) is the noncellular scaffolding component present within all tissues and organs. It provides crucial biochemical and biomechanical cues to instruct cellular behavior and has been shown to be under circadian clock regulation, a highly conserved cell-intrinsic timekeeping mechanism that has evolved with the 24-hour rhythmic environment. Aging is a major risk factor for many diseases, including cancer, fibrosis, and neurodegenerative disorders. Both aging and our modern 24/7 society disrupt circadian rhythms, which could contribute to altered ECM homeostasis. Understanding the daily dynamics of ECM and how this mechanism changes with age will have a profound impact on tissue health, disease prevention, and improving treatments. Maintaining rhythmic oscillations has been proposed as a hallmark of health. On the other hand, many hallmarks of aging turn out to be key regulators of circadian timekeeping mechanisms. In this review, we summarize new work linking the ECM with circadian clocks and tissue aging. We discuss how the changes in the biomechanical and biochemical properties of ECM during aging may contribute to circadian clock dysregulation. We also consider how the dampening of clocks with age could compromise the daily dynamic regulation of ECM homeostasis in matrix-rich tissues. This review aims to encourage new concepts and testable hypotheses about the two-way interactions between circadian clocks and ECM in the context of aging.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Homeostasis , Matriz Extracelular
5.
J Proteome Res ; 19(6): 2167-2184, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32319298

RESUMEN

Multivariate regression modelling provides a statistically powerful means of quantifying the effects of a given treatment while compensating for sources of variation and noise, such as variability between human donors and the behavior of different peptides during mass spectrometry. However, methods to quantify endogenous post-translational modifications (PTMs) are typically reliant on summary statistical methods that fail to consider sources of variability such as changes in the levels of the parent protein. Here, we compare three multivariate regression methods, including a novel Bayesian elastic net algorithm (BayesENproteomics) that enables assessment of relative protein abundances while also quantifying identified PTMs for each protein. We tested the ability of these methods to accurately quantify expression of proteins in a mixed-species benchmark experiment and to quantify synthetic PTMs induced by stable isotope labelling. Finally, we extended our regression pipeline to calculate fold changes at the pathway level, providing a complement to commonly used enrichment analysis. Our results show that BayesENproteomics can quantify changes to protein levels across a broad dynamic range while also accurately quantifying PTM and pathway-level fold changes.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Teorema de Bayes , Humanos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional
6.
J Biol Chem ; 294(46): 17395-17408, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586031

RESUMEN

Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/- cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling.


Asunto(s)
Interleucina-6/genética , Canales Iónicos/genética , Miocardio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Señalización del Calcio/genética , Endopeptidasas/genética , Células Endoteliales/química , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/química , Canales Iónicos/química , Sistema de Señalización de MAP Quinasas/genética , Mecanotransducción Celular/genética , Ratones , Miocardio/química , Fosforilación/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Tioléster Hidrolasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/química
7.
Clin Proteomics ; 17: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565759

RESUMEN

BACKGROUND: Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.

8.
Exp Cell Res ; 378(1): 98-103, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30836065

RESUMEN

The ageing process is a progressive decrease in physiological function, caused by accruement of damage and misregulation in the cells and tissues of an organism. Human ageing has been the focus of much scientific investigation, but studies have been complicated by the variability of the process between subjects and the slow pace at which it occurs. Although the consequences of ageing on cellular biochemical signalling and metabolism have been well studied, the impact on the mechanical properties of cells and the extracellular matrix - and the mechanotransduction pathways that connect the two - have often been overlooked. In this review we will discuss recent advances in the fields of nuclear and cytoskeletal biophysics, and consider this work in the context of ageing. In particular, we will examine the role of the nucleus in cellular mechanotransduction and in 'age-related diseases/phenomena' such as progeria and cellular senescence. Finally, we will discuss the therapeutic options being explored, drawing attention to a new field of medicine termed 'mechano-medicine' that may prove useful in addressing age-related pathology.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Mecanotransducción Celular , Progeria/metabolismo , Envejecimiento/genética , Animales , Núcleo Celular/metabolismo , Humanos , Progeria/genética , Progeria/patología
9.
Adv Exp Med Biol ; 1144: 53-69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30456642

RESUMEN

An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.


Asunto(s)
Hidrogeles/efectos de la radiación , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Técnicas de Cultivo de Célula , Diferenciación Celular , Matriz Extracelular , Humanos , Luz
10.
J Cell Sci ; 127(Pt 14): 3005-15, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24963133

RESUMEN

How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage.


Asunto(s)
Matriz Extracelular/fisiología , Lámina Nuclear/fisiología , Animales , Diferenciación Celular/fisiología , Elasticidad , Matriz Extracelular/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Lámina Nuclear/metabolismo , Transducción de Señal , Estrés Mecánico
11.
Nat Mater ; 14(9): 951-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26168347

RESUMEN

Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that copolymerization of collagen I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fibre bundles segregate heterogeneously to the hydrogel subsurface. Matrix stiffens locally-as in scars-while allowing separate control over adhesive-ligand density. The MMMS elicits scar-like phenotypes from mesenchymal stem cells (MSCs): cells spread and polarize quickly, increasing nucleoskeletal lamin-A yet expressing the 'scar marker' smooth muscle actin (SMA) more slowly. Surprisingly, expression responses to MMMS exhibit less cell-to-cell noise than homogeneously stiff gels. Such differences from bulk-average responses arise because a strong SMA repressor, NKX2.5, slowly exits the nucleus on rigid matrices. NKX2.5 overexpression overrides rigid phenotypes, inhibiting SMA and cell spreading, whereas cytoplasm-localized NKX2.5 mutants degrade in well-spread cells. MSCs thus form a 'mechanical memory' of rigidity by progressively suppressing NKX2.5, thereby elevating SMA in a scar-like state.


Asunto(s)
Núcleo Celular/metabolismo , Cicatriz/metabolismo , Matriz Extracelular/química , Proteínas de Homeodominio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Nicho de Células Madre , Factores de Transcripción/metabolismo , Resinas Acrílicas/química , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/patología , Cicatriz/patología , Colágeno Tipo I/química , Proteína Homeótica Nkx-2.5 , Ratones , Modelos Biológicos
12.
Proc Natl Acad Sci U S A ; 110(47): 18892-7, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191023

RESUMEN

Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34(+) cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation.


Asunto(s)
Células Madre Adultas/citología , Núcleo Celular/metabolismo , Eritropoyesis/fisiología , Laminas/metabolismo , Trombopoyesis/fisiología , Células Madre Adultas/fisiología , Biofisica , Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Citometría de Flujo/métodos , Humanos , Espectrometría de Masas/métodos , Reología
13.
Proc Natl Acad Sci U S A ; 108(28): 11458-63, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21709232

RESUMEN

Cell division, membrane rigidity, and strong adhesion to a rigid matrix are all promoted by myosin-II, and so multinucleated cells with distended membranes--typical of megakaryocytes (MKs)--seem predictable for low myosin activity in cells on soft matrices. Paradoxically, myosin mutations lead to defects in MKs and platelets. Here, reversible inhibition of myosin-II is sustained over several cell cycles to produce 3- to 10-fold increases in polyploid MK and a number of other cell types. Even brief inhibition generates highly distensible, proplatelet-like projections that fragment readily under shear, as seen in platelet generation from MKs in vivo. The effects are maximized with collagenous matrices that are soft and 2D, like the perivascular niches in marrow rather than 3D or rigid, like bone. Although multinucleation of other primary hematopoietic lineages helps to generalize a failure-to-fission mechanism, lineage-specific signaling with increased polyploidy proves possible and novel with phospho-regulation of myosin-II heavy chain. Label-free mass spectrometry quantitation of the MK proteome uses a unique proportional peak fingerprint (ProPF) analysis to also show upregulation of the cytoskeletal and adhesion machinery critical to platelet function. Myosin-inhibited MKs generate more platelets in vitro and also in vivo from the marrows of xenografted mice, while agonist stimulation activates platelet spreading and integrin αIIbß3. Myosin-II thus seems a central, matrix-regulated node for MK-poiesis and platelet generation.


Asunto(s)
Plaquetas/citología , Megacariocitos/citología , Miosina Tipo IIA no Muscular/antagonistas & inhibidores , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Colágeno , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Miosina Tipo IIA no Muscular/sangre , Fosforilación , Poliploidía , Proteoma , Trombopoyesis/efectos de los fármacos , Trombopoyesis/fisiología
14.
Differentiation ; 86(3): 77-86, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23790394

RESUMEN

Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells.


Asunto(s)
Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Movimiento Celular , Núcleo Celular/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología
15.
Trends Cell Biol ; 34(8): 646-656, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38423854

RESUMEN

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.


Asunto(s)
Envejecimiento , Biosíntesis de Proteínas , Proteostasis , Humanos , Envejecimiento/metabolismo , Animales , Ribosomas/metabolismo , Homeostasis
16.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766096

RESUMEN

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

17.
Biomater Adv ; 160: 213847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657288

RESUMEN

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Colágeno , Combinación de Medicamentos , Células Epiteliales , Hidrogeles , Laminina , Péptidos , Proteoglicanos , Laminina/farmacología , Laminina/química , Hidrogeles/química , Hidrogeles/farmacología , Proteoglicanos/farmacología , Proteoglicanos/química , Colágeno/química , Colágeno/farmacología , Péptidos/farmacología , Péptidos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/citología , Humanos , Femenino , Técnicas de Cultivo Tridimensional de Células/métodos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Glándulas Mamarias Humanas/citología , Organoides/efectos de los fármacos , Organoides/citología , Técnicas de Cultivo de Célula/métodos
18.
Biophys J ; 104(4): 759-69, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23442954

RESUMEN

Changes in extracellular osmolality have been shown to alter gene expression patterns and metabolic activity of various cell types, including chondrocytes. However, mechanisms by which physiological or pathological changes in osmolality impact chondrocyte function remain unclear. Here we use quantitative image analysis, electron microscopy, and a DNase I assay to show that hyperosmotic conditions (>400 mOsm/kg) induce chromatin condensation, while hypoosmotic conditions (100 mOsm/kg) cause decondensation. Large density changes (p < 0.001) occur over a very narrow range of physiological osmolalities, which suggests that chondrocytes likely experience chromatin condensation and decondensation during a daily loading cycle. The effect of changes in osmolality on nuclear morphology (p < 0.01) and chromatin condensation (p < 0.001) also differed between chondrocytes in monolayer culture and three-dimensional agarose, suggesting a role for cell adhesion. The relationship between condensation and osmolality was accurately modeled by a polymer gel model which, along with the rapid nature of the chromatin condensation (<20 s), reveals the basic physicochemical nature of the process. Alterations in chromatin structure are expected to influence gene expression and thereby regulate chondrocyte activity in response to osmotic changes.


Asunto(s)
Condrocitos/metabolismo , Cromatina/química , Presión Osmótica , Animales , Bovinos , Adhesión Celular , Condrocitos/ultraestructura , Cromatina/metabolismo , Desoxirribonucleasa I/metabolismo , Modelos Químicos , Ósmosis
19.
Matrix Biol ; 124: 8-22, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913834

RESUMEN

The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.


Asunto(s)
Colágeno , Metaloproteinasa 14 de la Matriz , Animales , Ratones , Ritmo Circadiano , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostasis , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo
20.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559706

RESUMEN

Cell function can be directly influenced by the mechanical and structural properties of the extracellular environment. In particular, cell morphology and phenotype can be regulated via the modulation of both the stiffness and surface topography of cell culture substrates. Previous studies have highlighted the ability to design cell culture substrates to optimise cell function. Many such examples, however, employ photo-crosslinkable polymers with a terminal stiffness or surface profile. This study presents a system of polyacrylamide hydrogels, where the surface topography can be tailored and the matrix stiffness can be altered in situ with photoirradiation. The process allows for the temporal regulation of the extracellular environment. Specifically, the surface topography can be tailored via reticulation parameters to include creased features with control over the periodicity, length and branching. The matrix stiffness can also be dynamically tuned via exposure to an appropriate dosage and wavelength of light, thus, allowing for the temporal regulation of the extracellular environment. When cultured on the surface of the hydrogels, the morphology and alignment of immortalised human mesenchymal stem cells can be directly influenced through the tailoring of surface creases, while cell size can be altered via changes in matrix stiffness. This system offers a new platform to study cellular mechanosensing and the influence of extracellular cues on cell phenotype and function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA