Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 106(11): 2395-407, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24896118

RESUMEN

Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na(+) leads to the formation of 100-µm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca(2+) gives rise to 100-µm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.


Asunto(s)
Membrana Dobles de Lípidos/química , Lipopolisacáridos/farmacología , Liposomas/química , Calcio/química , Calcio/farmacología , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/química , Liposomas/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Sodio/química , Sodio/farmacología
2.
PLoS One ; 11(5): e0156295, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27227979

RESUMEN

Shiga toxin-producing Escherichia coli is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assays to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E. coli O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. We also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures.


Asunto(s)
Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Animales , Bovinos , Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Microbiología de Alimentos , Membrana Dobles de Lípidos/química , Lipopolisacáridos/química , Serogrupo , Escherichia coli Shiga-Toxigénica/química
3.
PLoS One ; 10(7): e0132965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26225919

RESUMEN

Expression of the MADS domain transcription factor Myocyte Enhancer Factor 2 (MEF2) is regulated by numerous and overlapping enhancers which tightly control its transcription in the mesoderm. To understand how Mef2 expression is controlled in the heart, we identified a late stage Mef2 cardiac enhancer that is active in all heart cells beginning at stage 14 of embryonic development. This enhancer is regulated by the NK-homeodomain transcription factor Tinman, and the GATA transcription factor Pannier through both direct and indirect interactions with the enhancer. Since Tinman, Pannier and MEF2 are evolutionarily conserved from Drosophila to vertebrates, and since their vertebrate homologs can convert mouse fibroblast cells to cardiomyocytes in different activator cocktails, we tested whether over-expression of these three factors in vivo could ectopically activate known cardiac marker genes. We found that mesodermal over-expression of Tinman and Pannier resulted in approximately 20% of embryos with ectopic Hand and Sulphonylurea receptor (Sur) expression. By adding MEF2 alongside Tinman and Pannier, a dramatic expansion in the expression of Hand and Sur was observed in almost all embryos analyzed. Two additional cardiac markers were also expanded in their expression. Our results demonstrate the ability to initiate ectopic cardiac fate in vivo by the combination of only three members of the conserved Drosophila cardiac transcription network, and provide an opportunity for this genetic model system to be used to dissect the mechanisms of cardiac specification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miocardio/citología , Miocardio/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Secuencia de Consenso , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Corazón/embriología , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/genética , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
4.
Sci Rep ; 5: 10331, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26015293

RESUMEN

Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.


Asunto(s)
Membrana Dobles de Lípidos/química , Lipopolisacáridos/química , Membrana Dobles de Lípidos/metabolismo , Lipopolisacáridos/metabolismo , Liposomas/química , Liposomas/metabolismo , Análisis por Micromatrices , Microscopía de Fuerza Atómica , Microscopía Confocal , Fosfatidilcolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA