Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Anat ; 243(5): 813-825, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37391270

RESUMEN

The locus coeruleus (LC) provides the principal supply of noradrenaline (NA) to the brain, thereby modulating an array of brain functions. The release of NA, and therefore its impact on the brain, is governed by LC neuronal excitability. Glutamatergic axons, from various brain regions, topographically innervate different LC sub-domains and directly alter LC excitability. However, it is currently unclear whether glutamate receptor sub-classes, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, are divergently expressed throughout the LC. Immunohistochemistry and confocal microscopy were used to identify and localise individual GluA subunits in the mouse LC. Whole-cell patch clamp electrophysiology and subunit-preferring ligands were used to assess their impact on LC spontaneous firing rate (FR). GluA1 immunoreactive clusters were associated with puncta immunoreactive for VGLUT2 on somata, and VGLUT1 on distal dendrites. GluA4 was associated with these synaptic markers only in the distal dendrites. No specific signal was detected for the GluA2-3 subunits. The GluA1/2 receptor agonist (S)-CPW 399 increased LC FR, whilst the GluA1/3 receptor antagonist philanthotoxin-74 decreased it. 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide (PEPA), a positive allosteric modulator of GluA3/4 receptors, had no significant effect on spontaneous FR. The data suggest distinct AMPA receptor subunits are targeted to different LC afferent inputs and have contrasting effects on spontaneous neuronal excitability. This precise expression profile could be a mechanism for LC neurons to integrate diverse information contained in various glutamate afferents.

2.
Cell Mol Neurobiol ; 42(7): 2357-2377, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34101068

RESUMEN

Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.


Asunto(s)
Distrofina , Receptores Purinérgicos P2X7 , Animales , Cerebelo , Mediadores de Inflamación , Ratones , Ratones Endogámicos mdx , Isoformas de Proteínas , ARN Mensajero , Sinapsis
3.
Neuropathol Appl Neurobiol ; 47(4): 488-505, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33119191

RESUMEN

AIMS: Amyloid ß-oligomers (AßO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AßO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AßO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aß production (APP-PSEN1). METHODS AND RESULTS: Immunohistochemistry and confocal microscopy, using AßO-specific antibodies, confirmed LC AßO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AßO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AßO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aß-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS: The data suggest a close association between AßO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Locus Coeruleus/patología , Neuronas/patología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/fisiología
4.
Behav Res Methods ; 53(2): 536-557, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32748238

RESUMEN

Numerous neurodegenerative and psychiatric disorders are associated with deficits in executive functions such as working memory and cognitive flexibility. Progress in developing effective treatments for disorders may benefit from targeting these cognitive impairments, the success of which is predicated on the development of animal models with validated behavioural assays. Zebrafish offer a promising model for studying complex brain disorders, but tasks assessing executive function are lacking. The Free-movement pattern (FMP) Y-maze combines aspects of the common Y-maze assay, which exploits the inherent motivation of an organism to explore an unknown environment, with analysis based on a series of sequential two-choice discriminations. We validate the task as a measure of working memory and executive function by comparing task performance parameters in adult zebrafish treated with a range of glutamatergic, cholinergic and dopaminergic drugs known to impair working memory and cognitive flexibility. We demonstrate the cross-species validity of the task by assessing performance parameters in adapted versions of the task for mice and Drosophila, and finally a virtual version in humans, and identify remarkable commonalities between vertebrate species' navigation of the maze. Together, our results demonstrate that the FMP Y-maze is a sensitive assay for assessing working memory and cognitive flexibility across species from invertebrates to humans, providing a simple and widely applicable behavioural assay with exceptional translational relevance.


Asunto(s)
Función Ejecutiva , Memoria a Corto Plazo , Animales , Encéfalo , Aprendizaje por Laberinto , Ratones , Motivación , Pez Cebra
5.
Gastroenterology ; 155(3): 852-864.e3, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29802853

RESUMEN

BACKGROUND & AIMS: Psychological stress, in early life or adulthood, is a significant risk factor for inflammatory disorders, including inflammatory bowel diseases. However, little is known about the mechanisms by which emotional factors affect the immune system. γ-Aminobutyric acid type A receptors (GABAARs) regulate stress and inflammation, but it is not clear whether specific subtypes of GABAARs mediate stress-induced gastrointestinal inflammation. We investigated the roles of different GABAAR subtypes in mouse colon inflammation induced by 2 different forms of psychological stress. METHODS: C57BL/6J mice were exposed to early-life stress, and adult mice were exposed to acute-restraint stress; control mice were not exposed to either form of stress. We collected colon tissues and measured contractility using isometric tension recordings; colon inflammation, based on levels of cluster of differentiation 163 and tumor necrosis factor messenger RNA (mRNA) and protein and myeloperoxidase activity; and permeability, based on levels of tight junction protein 1 and occludin mRNA and protein. Mice were given fluorescently labeled dextran orally and systemic absorption was measured. We also performed studies of mice with disruption of the GABAAR subunit α3 gene (Gabra3-/- mice). RESULTS: Mice exposed to early-life stress had significantly altered GABAAR-mediated colonic contractility and impaired barrier function, and their colon tissue had increased levels of Gabra3 mRNA compared with control mice. Restraint stress led to colon inflammation in C57/BL6J mice but not Gabra3-/- mice. Colonic inflammation was induced in vitro by an α3-GABAAR agonist, showing a proinflammatory role for this receptor subtype. In contrast, α1/4/5-GABAAR ligands decreased the expression of colonic inflammatory markers. CONCLUSIONS: We found stress to increase expression of Gabra3 and induce inflammation in mouse colon, together with impaired barrier function. The in vitro pharmacologic activation of α3-GABAARs recapitulated colonic inflammation, whereas α1/4/5-GABAAR ligands were anti-inflammatory. These proteins might serve as therapeutic targets for treatment of colon inflammation or inflammatory bowel diseases.


Asunto(s)
Colitis/metabolismo , Receptores de GABA-A/metabolismo , Estrés Psicológico/complicaciones , Animales , Colitis/psicología , Colon/fisiopatología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , ARN Mensajero/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
6.
Front Neuroendocrinol ; 36: 28-48, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24929099

RESUMEN

Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Neurotransmisores/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de GABA-A/metabolismo , Estrés Psicológico/metabolismo , Humanos
7.
J Neurosci ; 34(31): 10361-78, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080596

RESUMEN

The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.


Asunto(s)
Colon/anatomía & histología , Sistema Nervioso Entérico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de GABA-A/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/genética , Bloqueadores de los Canales de Sodio/farmacología , Somatostatina/metabolismo , Estrés Psicológico/metabolismo , Tetrodotoxina/farmacología
8.
J Neurosci ; 34(3): 823-38, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431441

RESUMEN

Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ß, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ßδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Inhibición Neural/fisiología , Núcleo Accumbens/fisiología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Sinapsis/efectos de los fármacos
9.
J Neurosci ; 33(50): 19534-54, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24336719

RESUMEN

Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ(0/0)) exhibit altered maternal behavior. Intriguingly, δ(0/0) offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ(0/0) pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress neurocircuitry.


Asunto(s)
Astrocitos/fisiología , Hipotálamo/fisiología , Neurotransmisores/metabolismo , Estrés Psicológico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/farmacología , Receptores de GABA-A/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos
10.
Biomolecules ; 14(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38672476

RESUMEN

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Asunto(s)
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Ratones , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacología , Pregnanolona/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Ratones Endogámicos C57BL , Femenino , Masculino , Transmisión Sináptica/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
11.
J Biol Chem ; 287(49): 41374-85, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23043099

RESUMEN

The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.


Asunto(s)
Barrera Hematoencefálica , Encéfalo/metabolismo , Proteínas Asociadas a la Distrofina/fisiología , Edema/patología , Neuroglía/metabolismo , Animales , Acuaporina 4/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Técnicas de Cocultivo , Endotelio Vascular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía de Contraste de Fase/métodos , Canales de Potasio de Rectificación Interna/metabolismo , Uniones Estrechas/metabolismo
12.
J Chem Neuroanat ; 128: 102233, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640913

RESUMEN

Diverse classes of voltage-gated potassium channels (Kv) are integral to the variety of electrical activity patterns that distinguish different classes of neurons in the brain. A feature of their heterogenous expression patterns is the highly precise manner in which specific cell types target their location within functionally specialised sub-cellular domains. Although Kv expression profiles in cortical brain regions are widely reported, their immunolocalisation in sub-cortical areas such as the striatum, and in associated diseases such as Parkinson's disease (PD), remain less well described. Therefore, the broad aims of this study were to provide a high resolution immunolocalisation analysis of various Kv subtypes within the mouse striatum and assess their potential plasticity in a model of PD. Immunohistochemistry and confocal microscopy revealed that immunoreactivity for Kv1.1, 1.2 and 1.4 overlapped to varying degrees with excitatory and inhibitory axonal marker proteins suggesting these Kv subtypes are targeted to axons innervating striatal medium spiny neurons (MSNs). Immunoreactivity for Kv1.3 strongly overlapped with signal for mitochondrial marker proteins in MSN somata and dendrites. Kv1.5 immunoreactivity was expressed in parvalbumin-immunopositive neurons whereas Kv1.6 was located in cells immunopositive for microglia. Signal for Kv2.1 was concentrated on the somatic and proximal dendritic plasma membrane of MSNs, whilst immunoreactivity for Kv4.2 was targeted to their distal dendritic regions. Finally, striatal Kv2.1 expression, at both the mRNA and protein levels, was decreased in alpha-synuclein overexpressing mice, yet increased in alpha-synuclein knockout mice, compared to wild-type counterparts. The data indicate a variety of Kv expression patterns that are distinctive to the striatum and susceptible to pathology that mirrors PD. Furthermore, these findings advance our understanding of the molecular diversity of various striatal cell types, and potentially have implications for the homeostatic changes of MSN excitability during associated medical conditions such as PD.


Asunto(s)
Enfermedad de Parkinson , Canales de Potasio con Entrada de Voltaje , Ratones , Animales , alfa-Sinucleína , Neuronas/fisiología , Ratones Noqueados
13.
Neuropharmacology ; 216: 109172, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35780977

RESUMEN

Physiological oscillations in the cortico-thalamo-cortical loop occur during processes such as sleep, but these can become dysfunctional in pathological conditions such as absence epilepsy. The purine neuromodulator adenosine can act as an endogenous anticonvulsant: it is released into the extracellular space during convulsive seizures to activate A1 receptors suppressing on-going activity and delaying the occurrence of the next seizure. However, the role of adenosine in thalamic physiological and epileptiform oscillations is less clear. Here we have combined immunohistochemistry, electrophysiology, and fixed potential amperometry (FPA) biosensor measurements to characterise the release and actions of adenosine in thalamic oscillations measured in rodent slices. In the thalamus, A1 receptors are highly expressed particularly in the ventral basal (VB) thalamus and reticular thalamic nucleus (nRT) supporting a role for adenosine signalling in controlling oscillations. In agreement with previous studies, both adenosine and adenosine A1 receptor agonists inhibited thalamic oscillations in control (spindle-like) and in epileptic conditions. Here we have shown for the first time that both control and epileptiform oscillations are enhanced (i.e., increased number of oscillatory cycles) by blocking A1 receptors consistent with adenosine release occurring during oscillations. Although increases in extracellular adenosine could not be directly detected during control oscillations, clear increases in adenosine concentration could be detected with a biosensor during epileptiform oscillation activity. Thus, adenosine is released during thalamic oscillations and acts via A1 receptors to feedback and reduce thalamic oscillatory activity.


Asunto(s)
Adenosina , Epilepsia Tipo Ausencia , Adenosina/farmacología , Retroalimentación , Humanos , Convulsiones , Tálamo
14.
Brain Commun ; 4(1): fcac039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233527

RESUMEN

A deficient transport of amyloid-ß across the blood-brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer's disease and cerebral amyloid angiopathy, respectively. At the blood-brain barrier, amyloid-ß efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-ß transport across the blood-brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-ß clearance via low-density lipoprotein receptor-related protein 1 across the blood-brain barrier. We further demonstrate that risk factors for Alzheimer's disease, amyloid-ß expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-ß clearance proposing a measure to evaluate Alzheimer's disease and ageing, as well as a target for counteracting amyloid-ß build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-ß assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-ß across the blood-brain barrier.

15.
Eur J Neurosci ; 34(2): 250-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21692880

RESUMEN

The locus coeruleus (LC) provides the major source of noradrenaline to the central nervous system and is modulated by neurochemically diverse afferents. LC function is central to arousal, memory, cognition and the stress response, with dysfunction of the LC-noradrenergic axis implicated in debilitating psychiatric disorders. The precise targeting of neurotransmitter receptors within the LC is essential for processing the information contained in diverse afferents and thus LC output. The inhibitory modulation of LC neurons is thought to be effected mainly through GABA-A receptors (GABA(A)Rs). Diverse GABA(A)Rs are pentameric complexes assembled from a repertoire of subunits resulting in substantial diversity in their molecular, functional and pharmacological properties throughout the brain. The precise location of distinct GABA(A) R subunits in subregions of the LC, and the neurochemical identity of the cells that express them, remains to be determined. Here, we show that the GABA(A)R alpha1 subunit is expressed exclusively in neurochemically and morphologically diverse non-noradrenergic cell types within the LC, which may innervate the principal noradrenergic cells. Thus, the GABA(A)R alpha1 subunit could provide a neurochemical signature for a pool of local circuit interneurons in the LC. In contrast, non-overlapping GABA(A)R alpha2 and alpha3 subunit-immunoreactive puncta were enriched on noradrenergic dendrites and, to a lesser extent, on somata. The study reveals a cell-type- and domain-specific expression pattern of distinct GABA(A)R subunits in the LC. These data will serve as a template for understanding inhibitory modulation of this region and facilitate more directed pharmacological strategies for disorders arising from the impairment of LC function.


Asunto(s)
Locus Coeruleus/citología , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Animales , Biomarcadores/metabolismo , Calbindina 2 , Calbindinas , Dendritas/metabolismo , Locus Coeruleus/metabolismo , Masculino , Neuronas/ultraestructura , Norepinefrina/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Proteína G de Unión al Calcio S100/metabolismo
16.
Nat Neurosci ; 10(7): 923-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17572671

RESUMEN

In mammals, identifying the contribution of specific neurons or networks to behavior is a key challenge. Here we describe an approach that facilitates this process by enabling the rapid modulation of synaptic inhibition in defined cell populations. Binding of zolpidem, a systemically active allosteric modulator that enhances the function of the GABAA receptor, requires a phenylalanine residue (Phe77) in the gamma2 subunit. Mice in which this residue is changed to isoleucine are insensitive to zolpidem. By Cre recombinase-induced swapping of the gamma2 subunit (that is, exchanging Ile77 for Phe77), zolpidem sensitivity can be restored to GABAA receptors in chosen cell types. We demonstrate the power of this method in the cerebellum, where zolpidem rapidly induces significant motor deficits when Purkinje cells are made uniquely sensitive to its action. This combined molecular and pharmacological technique has demonstrable advantages over targeted cell ablation and will be invaluable for investigating many neuronal circuits.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neuronas/fisiología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Animales , Autorradiografía , Electrofisiología , Femenino , Agonistas del GABA/farmacología , Genotipo , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Equilibrio Postural/efectos de los fármacos , Equilibrio Postural/fisiología , Ingeniería de Proteínas , Células de Purkinje/efectos de los fármacos , Células de Purkinje/fisiología , Piridinas/farmacología , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Receptores de GABA-B/fisiología , Sinapsis/efectos de los fármacos , Zolpidem
17.
Eur J Neurosci ; 32(11): 1868-88, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21073549

RESUMEN

Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABA(A) receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freeze-fracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low-density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78-132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33-48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors.


Asunto(s)
Técnica de Fractura por Congelación/métodos , Inmunohistoquímica/métodos , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Receptores de GABA-A/metabolismo , Animales , Biomarcadores/metabolismo , Femenino , Cobayas , Hipocampo/citología , Masculino , Ratones , Ratones Noqueados , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de GABA-A/genética , Sinapsis/química , Sinapsis/metabolismo , Sinapsis/ultraestructura
18.
Int J Neuropsychopharmacol ; 13(4): 515-25, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19653930

RESUMEN

Early life events influence vulnerability to psychiatric illness. This has been modelled in rats and it has been demonstrated that different durations of maternal separation shape adult endocrine and behavioural stress reactivity. One system through which maternal separation may act is the locus coeruleus (LC)-norepinephrine system that regulates emotional arousal. Here we demonstrate that different durations of maternal separation have distinct effects on LC physiology and dendritic morphology. Rat pups were separated from the dam for 15 min/d (HMS-15) or 180 min/d (HMS-180) from post-natal days 2-14. Others were either undisturbed (HMS-0) or were vendor-purchased controls. LC characteristics were compared at age 22-35 d using whole-cell recordings in vitro. Cells were filled with biocytin for morphological analysis. LC neurons of HMS-180 rats were tonically activated compared to HMS-15 and control rats, with firing rates that were 2-fold higher than these groups. Corticotrophin-releasing factor (CRF) application did not further activate LC neurons of HMS-180 rats but increased LC firing rate in HMS-0 and control rats. LC neurons of HMS-15 rats were resistant to excitation by CRF. Maternal separation also affected LC dendritic morphology. LC dendrites of HMS-15 rats exhibited less branching and decreased total dendritic length, an effect that could decrease the probability of contacting limbic afferents that terminate in the pericoerulear region. This effect may provide a structural basis for an attenuated magnitude of emotional arousal. Together, these results demonstrate long-term consequences of early life events on the LC-norepinephrine system that may shape adult behaviour.


Asunto(s)
Hormona Liberadora de Corticotropina/farmacología , Dendritas , Locus Coeruleus , Privación Materna , Neuronas/fisiología , Animales , Animales Recién Nacidos , Femenino , Técnicas In Vitro , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Masculino , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
19.
Auton Neurosci ; 221: 102579, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445405

RESUMEN

Lifelong functional plasticity of the gastrointestinal (GI) tract is essential for health, yet the underlying molecular mechanisms are poorly understood. The enteric nervous system (ENS) regulates all aspects of the gut function, via a range of neurotransmitter pathways, one of which is the GABA-GABAA receptor (GABAAR) system. We have previously shown that GABAA receptor subunits are differentially expressed within the ENS and are involved in regulating various GI functions. We have also shown that these receptors are involved in mediating stress-induced colonic inflammation. However, the expression and function of intestinal GABAARs, at different ages, is largely unexplored and was the focus of this study. Here we show that the impact of GABAAR activation on colonic contractility changes from early postnatal period through to late adulthood, in an age-dependant manner. We also show that the highest levels of expression for all GABAAR subunits is evident at postnatal day (P) 10 apart from the α3 subunit which increased with age. This increase in the α3 subunit expression in late adulthood (18 months old) is accompanied by an increase in the expression of inflammatory markers within the mouse colon. Finally, we demonstrate that the deletion of the α3 subunit prevents the increase in the expression of colonic inflammatory markers associated with healthy ageing. Collectively, the data provide the first demonstration of the molecular and functional plasticity of the GI GABAAR system over the course of a lifetime, and its possible role in mediating the age-induced colonic inflammation associated with healthy ageing.


Asunto(s)
Envejecimiento/fisiología , Colon/fisiología , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal/fisiología , Enfermedades Inflamatorias del Intestino/fisiopatología , Plasticidad Neuronal/fisiología , Receptores de GABA-A/fisiología , Alprazolam/farmacología , Animales , Colon/crecimiento & desarrollo , Colon/inervación , Moduladores del GABA/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peristaltismo/efectos de los fármacos , Peristaltismo/fisiología , Subunidades de Proteína , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética
20.
Front Neurosci ; 13: 196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949017

RESUMEN

The locus coeruleus (LC)-norepinephrine (NE) system modulates a range of salient brain functions, including memory and response to stress. The LC-NE system is regulated by neurochemically diverse inputs, including a range of neuropeptides such as arginine-vasopressin (AVP). Whilst the origins of many of these LC inputs, their synaptic connectivity with LC neurons, and their contribution to LC-mediated brain functions, have been well characterized, this is not the case for the AVP-LC system. Therefore, our aims were to define the types of synapses formed by AVP+ fibers with LC neurons using immunohistochemistry together with confocal and transmission electron microscopy (TEM), the origins of such inputs, using retrograde tracers, and the plasticity of the LC AVP system in response to stress and spatial learning, using the maternal separation (MS) and Morris water maze (MWM) paradigms, respectively, in rat. Confocal microscopy revealed that AVP+ fibers contacting tyrosine hydroxylase (TH)+ LC neurons were also immunopositive for vesicular glutamate transporter 2, a marker of presynaptic glutamatergic axons. TEM confirmed that AVP+ axons formed Gray type I (asymmetric) synapses with TH+ dendrites thus confirming excitatory synaptic connections between these systems. Retrograde tracing revealed that these LC AVP+ fibers originate from hypothalamic vasopressinergic magnocellular neurosecretory neurons (AVPMNNs). MS induced a significant increase in the density of LC AVP+ fibers. Finally, AVPMNN circuit upregulation by water-deprivation improved MWM performance while increased Fos expression was found in LC and efferent regions such as hippocampus and prefrontal cortex, suggesting that AVPMMN projections to LC could integrate homeostatic responses modifying neuroplasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA