Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 73(3): 533-546.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595435

RESUMEN

Quiescence is a stress-resistant state in which cells reversibly exit the cell cycle and suspend most processes. Quiescence is essential for stem cell maintenance, and its misregulation is implicated in tumor formation. One of the hallmarks of quiescent cells is highly condensed chromatin. Because condensed chromatin often correlates with transcriptional silencing, it has been hypothesized that chromatin compaction represses transcription during quiescence. However, the technology to test this model by determining chromatin structure within cells at gene resolution has not previously been available. Here, we use Micro-C XL to map chromatin contacts at single-nucleosome resolution genome-wide in quiescent Saccharomyces cerevisiae cells. We describe chromatin domains on the order of 10-60 kilobases that, only in quiescent cells, are formed by condensin-mediated loops. Condensin depletion prevents the compaction of chromatin within domains and leads to widespread transcriptional de-repression. Finally, we demonstrate that condensin-dependent chromatin compaction is conserved in quiescent human fibroblasts.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Senescencia Celular , Ensamble y Desensamble de Cromatina , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/enzimología , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Adenosina Trifosfatasas/genética , Sitios de Unión , Proliferación Celular , Células Cultivadas , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Humanos , Complejos Multiproteicos/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 115(49): 12447-12452, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455303

RESUMEN

Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.


Asunto(s)
Heterocromatina/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas , Unión Proteica , Saccharomyces cerevisiae/genética
3.
Curr Genet ; 65(5): 1145-1151, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31055637

RESUMEN

Quiescence is a highly conserved inactive life stage in which the cell reversibly exits the cell cycle in response to external cues. Quiescence is essential for diverse processes such as the maintenance of adult stem cell stores, stress resistance, and longevity, and its misregulation has been implicated in cancer. Although the non-cycling nature of quiescent cells has made obtaining sufficient quantities of quiescent cells for study difficult, the development of a Saccharomyces cerevisiae model of quiescence has recently enabled detailed investigation into mechanisms underlying the quiescent state. Like their metazoan counterparts, quiescent budding yeast exhibit widespread transcriptional silencing and dramatic chromatin condensation. We have recently found that the structural maintenance of chromosomes (SMC) complex condensin binds throughout the quiescent budding yeast genome and induces the formation of large chromatin loop domains. In the absence of condensin, quiescent cell chromatin is decondensed and transcription is de-repressed. Here, we briefly discuss our findings in the larger context of the genome organization field.


Asunto(s)
Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Fase de Descanso del Ciclo Celular , Adenosina Trifosfatasas/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
4.
J Biol Chem ; 292(13): 5271-5281, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28202543

RESUMEN

Repair of DNA double strand breaks (DSBs) is key for maintenance of genome integrity. When DSBs are repaired by homologous recombination, DNA ends can undergo extensive processing, producing long stretches of single-stranded DNA (ssDNA). In vivo, DSB processing occurs in the context of chromatin, and studies indicate that histones may remain associated with processed DSBs. Here we demonstrate that histones are not evicted from ssDNA after in vitro chromatin resection. In addition, we reconstitute histone-ssDNA complexes (termed ssNucs) with ssDNA and recombinant histones and analyze these particles by a combination of native gel electrophoresis, sedimentation velocity, electron microscopy, and a recently developed electrostatic force microscopy technique, DREEM (dual-resonance frequency-enhanced electrostatic force microscopy). The reconstituted ssNucs are homogenous and relatively stable, and DREEM reveals ssDNA wrapping around histones. We also find that histone octamers are easily transferred in trans from ssNucs to either double-stranded DNA or ssDNA. Furthermore, the Fun30 remodeling enzyme, which has been implicated in DNA repair, binds ssNucs preferentially over nucleosomes, and ssNucs are effective at activating Fun30 ATPase activity. Our results indicate that ssNucs may be a hallmark of processes that generate ssDNA, and that posttranslational modification of ssNucs may generate novel signaling platforms involved in genome stability.


Asunto(s)
Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
5.
Biochim Biophys Acta ; 1839(8): 728-36, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24583555

RESUMEN

Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.


Asunto(s)
Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Acetilación , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Reparación del ADN , Células Eucariotas/citología , Células Eucariotas/metabolismo , Histonas/genética , Humanos , Lisina/metabolismo , Metilación , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética
6.
Elife ; 102021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34734806

RESUMEN

A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber diameters have not been observed, even between interphase and mitotic chromosomes. We show that an increase in the range of local inter-nucleosomal contacts in quiescent yeast drives the compaction of chromatin fibers genome-wide. Unlike actively dividing cells, inter-nucleosomal interactions in quiescent cells require a basic patch in the histone H4 tail. This quiescence-specific fiber folding globally represses transcription and inhibits chromatin loop extrusion by condensin. These results reveal that global changes in chromatin fiber compaction can occur during cell state transitions, and establish physiological roles for local chromatin fiber folding in regulating transcription and chromatin domain formation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas , Cromatina/metabolismo , Proteínas de Unión al ADN , Histonas/química , Histonas/metabolismo , Complejos Multiproteicos , Nucleosomas/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética
7.
Methods Mol Biol ; 1686: 125-135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29030817

RESUMEN

Saccharomyces cerevisiae enter quiescence during extended growth in culture (greater than 7 days). Here, we describe a method to separate quiescent from non-quiescent cells by density gradient. We also describe approaches for DAPI staining the chromatin of quiescent cells, measuring quiescent cell viability, and extracting RNA from quiescent cells for use in genomics experiments.


Asunto(s)
Fase de Descanso del Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , División Celular , Cromatina/genética , ARN de Hongos/análisis , ARN de Hongos/genética , Saccharomyces cerevisiae/genética
8.
Nat Commun ; 5: 4751, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25163529

RESUMEN

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by 'coating' nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.


Asunto(s)
Heterocromatina/química , Nucleosomas/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Algoritmos , Heterocromatina/metabolismo , Microscopía de Fuerza Atómica , Método de Montecarlo , Nucleosomas/química , Nucleosomas/genética , Multimerización de Proteína , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA