Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 597(7878): 698-702, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526714

RESUMEN

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Animales , Antibacterianos/química , Compuestos Aza/química , Compuestos Aza/farmacología , Ciclooctanos/química , Ciclooctanos/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , beta-Lactamasas
2.
Bioorg Med Chem ; 28(24): 115826, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160146

RESUMEN

UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC), the zinc metalloenzyme catalyzing the first committed step of lipid A biosynthesis in Gram-negative bacteria, has been a target for antibacterial drug discovery for many years. All inhibitor chemotypes reaching an advanced preclinical stage and clinical phase 1 have contained terminal hydroxamic acid, and none have been successfully advanced due, in part, to safety concerns, including hemodynamic effects. We hypothesized that the safety of LpxC inhibitors could be improved by replacing the terminal hydroxamic acid with a different zinc-binding group. After choosing an N-hydroxyformamide zinc-binding group, we investigated the structure-activity relationship of each part of the inhibitor scaffold with respect to Pseudomonas aeruginosa and Escherichia coli LpxC binding affinity, in vitro antibacterial potency and pharmacological properties. We identified a novel, potency-enhancing hydrophobic binding interaction for an LpxC inhibitor. We demonstrated in vivo efficacy of one compound in a neutropenic mouse E. coli infection model. Another compound was tested in a rat hemodynamic assay and was found to have a hypotensive effect. This result demonstrated that replacing the terminal hydroxamic acid with a different zinc-binding group was insufficient to avoid this previously recognized safety issue with LpxC inhibitors.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/química , Formamidas/química , Hemodinámica/efectos de los fármacos , Amidohidrolasas/metabolismo , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Sitios de Unión , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/patología , Femenino , Formamidas/metabolismo , Formamidas/farmacología , Formamidas/uso terapéutico , Semivida , Masculino , Ratones , Simulación de Dinámica Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 26(19): 4775-4780, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578247

RESUMEN

During the lead generation and optimization of PARP inhibitors blocking centrosome clustering, it was discovered that increasing hydrogen bond acceptor (HBA) strength improved cellular potency but led to elevated Caco2 and MDR1 efflux and thus poor oral bioavailability. Conversely, compounds with lower efflux had reduced potency. The project team was able to improve the bioavailability by reducing efflux through systematic modifications to the strength of the HBA by changing the electronic properties of neighboring groups, whilst maintaining sufficient acceptor strength for potency. Additionally, it was observed that enantiomers with different potency showed similar efflux, which is consistent with the promiscuity of efflux transporters. Eventually, a balance between potency and low efflux was achieved for a set of lead compounds with good bioavailability which allowed the project to progress towards establishing in vivo pharmacokinetic/pharmacodynamic relationships.


Asunto(s)
Centrosoma/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Perros , Humanos , Enlace de Hidrógeno , Células de Riñón Canino Madin Darby , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Ratas
4.
Bioorg Med Chem Lett ; 21(11): 3399-403, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21524576

RESUMEN

Herein we describe the discovery of compounds that are competitive antagonists of the CP101-606 binding site within the NR2B subtype of the NMDA receptor. The compounds identified do not possess phenolic functional groups such as those in ifenprodil and related analogs. Initial identification of hits in this series focused on a basic, secondary amine side chain which led to good potency, but also presented a hERG liability. Further modifications led to examples of non-basic replacements which demonstrated much less liability in this regard. Finally, one compound in the series, 6a, was tested in the mouse forced swim depression assay and found to show activity (s.c. 60 mg/kg).


Asunto(s)
Antidepresivos/síntesis química , Pirazinas/síntesis química , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Antidepresivos/química , Antidepresivos/farmacología , Sitios de Unión , Unión Competitiva , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Actividad Motora/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Pirazinas/química , Pirazinas/farmacología
5.
ACS Infect Dis ; 3(4): 310-319, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28157293

RESUMEN

The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Discovery of novel classes of antibiotics with activity against these pathogens has been impeded by a fundamental lack of understanding of the molecular drivers underlying small molecule uptake. Although it is well-known that outer membrane porins represent the main route of entry for small, hydrophilic molecules across the Gram-negative cell envelope, the structure-permeation relationship for porin passage has yet to be defined. To address this knowledge gap, we developed a sensitive and specific whole-cell approach in Escherichia coli called titrable outer membrane permeability assay system (TOMAS). We used TOMAS to characterize the structure porin-permeation relationships of a set of novel carbapenem analogues through the Pseudomonas aeruginosa porin OprD. Our results show that small structural modifications, especially the number and nature of charges and their position, have dramatic effects on the ability of these molecules to permeate cells through OprD. This is the first demonstration of a defined relationship between specific molecular changes in a substrate and permeation through an isolated porin. Understanding the molecular mechanisms that impact antibiotic transit through porins should provide valuable insights to antibacterial medicinal chemistry and may ultimately allow for the rational design of porin-mediated uptake of small molecules into Gram-negative bacteria.


Asunto(s)
Carbapenémicos/química , Porinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Carbapenémicos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Porinas/genética , Pseudomonas aeruginosa/metabolismo , Relación Estructura-Actividad
6.
J Biol Chem ; 277(35): 31499-505, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12072428

RESUMEN

Cerebral deposition of amyloid beta-protein (A beta) is believed to play a key role in the pathogenesis of Alzheimer's disease. Because A beta is produced from the processing of amyloid beta-protein precursor (APP) by beta- and gamma-secretases, these enzymes are considered important therapeutic targets for identification of drugs to treat Alzheimer's disease. Unlike beta-secretase, which is a monomeric aspartyl protease, gamma-secretase activity resides as part of a membrane-bound, high molecular weight, macromolecular complex. Pepstatin and L685458 are among several structural classes of gamma-secretase inhibitors identified so far. These compounds possess a hydroxyethylene dipeptide isostere of aspartyl protease transition state analogs, suggesting gamma-secretase may be an aspartyl protease. However, the mechanism of inhibition of gamma-secretase by pepstatin and L685458 has not been elucidated. In this study, we report that pepstatin A methylester and L685458 unexpectedly displayed linear non-competitive inhibition of gamma-secretase. Sulfonamides and benzodiazepines, which do not resemble transition state analogs of aspartyl proteases, also displayed potent, non-competitive inhibition of gamma-secretase. Models to rationalize how transition state analogs inhibit their targets by non-competitive inhibition are discussed.


Asunto(s)
Benzodiazepinas/farmacología , Carbamatos/farmacología , Dipéptidos/farmacología , Endopeptidasas/metabolismo , Pepstatinas/farmacología , Inhibidores de Proteasas/farmacología , Sulfonamidas/farmacología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Sitios de Unión , Humanos , Cinética , Modelos Moleculares , Proteínas Recombinantes/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA