Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Development ; 150(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37539662

RESUMEN

Congenital tufting enteropathy (CTE) is a life-threatening intestinal disorder resulting from loss-of-function mutations in EPCAM and SPINT2. Mice deficient in Spint2, encoding the protease inhibitor HAI-2, develop CTE-like intestinal failure associated with a progressive loss of the EpCAM protein, which is caused by unchecked activity of the serine protease matriptase (ST14). Here, we show that loss of HAI-2 leads to increased proteolytic processing of EpCAM. Elimination of the reported matriptase cleavage site strongly suppressed proteolytic processing of EpCAM in vitro and in vivo. Unexpectedly, expression of cleavage-resistant EpCAM failed to prevent intestinal failure and postnatal lethality in Spint2-deficient mice. In addition, genetic inactivation of intestinal matriptase (St14) counteracted the effect of Spint2 deficiency in mice expressing cleavage-resistant EpCAM, indicating that matriptase does not drive intestinal dysfunction by excessive proteolysis of EpCAM. Interestingly, mice expressing cleavage-resistant EpCAM developed late-onset intestinal defects and exhibited a shortened lifespan even in the presence of HAI-2, suggesting that EpCAM cleavage is indispensable for EpCAM function. Our findings provide new insights into the role of EpCAM and the etiology of the enteropathies driven by Spint2 deficiency.


Asunto(s)
Insuficiencia Intestinal , Animales , Ratones , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Intestinos , Proteínas Inhibidoras de Proteinasas Secretoras
2.
Annu Rev Cell Dev Biol ; 27: 213-35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21721945

RESUMEN

Analysis of vertebrate genome sequences at the turn of the millennium revealed that a vastly larger repertoire of enzymes execute proteolytic cleavage reactions within the pericellular and extracellular environments than was anticipated from biochemical and molecular analysis. Most unexpected was the unveiling of an entire new family of structurally unique multidomain serine proteases that are anchored directly to the plasma membrane. Unlike secreted serine proteases, which function primarily in tissue repair, immunity, and nutrient uptake, these membrane-anchored serine proteases regulate fundamental cellular and developmental processes, including tissue morphogenesis, epithelial barrier function, ion and water transport, cellular iron export, and fertilization. Here the cellular and developmental biology of this fascinating new group of proteases is reviewed. Particularly highlighted is how the study of membrane-anchored serine proteases has expanded our knowledge of the range of physiological processes that require regulated proteolysis at the cell surface.


Asunto(s)
Biología Celular , Membrana Celular/enzimología , Biología Evolutiva , Serina Endopeptidasas/metabolismo , Animales , Membrana Celular/química , Oído Interno/fisiología , Fertilización/fisiología , Humanos , Hierro/metabolismo , Péptidos Natriuréticos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Transducción de Señal/fisiología , Sodio/metabolismo , Uniones Estrechas/metabolismo
3.
Pflugers Arch ; 474(6): 613-624, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312839

RESUMEN

Experimental nephrotic syndrome leads to activation of the epithelial sodium channel (ENaC) by proteolysis and promotes renal sodium retention. The membrane-anchored serine protease prostasin (CAP1/PRSS8) is expressed in the distal nephron and participates in proteolytic ENaC regulation by serving as a scaffold for other serine proteases. However, it is unknown whether prostasin is also involved in ENaC-mediated sodium retention of experimental nephrotic syndrome. In this study, we used genetically modified knock-in mice with Prss8 mutations abolishing its proteolytic activity (Prss8-S238A) or prostasin activation (Prss8-R44Q) to investigate the development of sodium retention in doxorubicin-induced nephrotic syndrome. Healthy Prss8-S238A and Prss8-R44Q mice had normal ENaC activity as reflected by the natriuretic response to the ENaC blocker triamterene. After doxorubicin injection, all genotypes developed similar proteinuria. In all genotypes, urinary prostasin excretion increased while renal expression was not altered. In nephrotic mice of all genotypes, triamterene response was similarly increased, consistent with ENaC activation. As a consequence, urinary sodium excretion dropped in all genotypes and mice similarly gained body weight by + 25 ± 3% in Prss8-wt, + 20 ± 2% in Prss8-S238A and + 28 ± 3% in Prss8-R44Q mice (p = 0.16). In Western blots, expression of fully cleaved α- and γ-ENaC was similarly increased in nephrotic mice of all genotypes. In conclusion, proteolytic ENaC activation and sodium retention in experimental nephrotic syndrome are independent of the activation of prostasin and its enzymatic activity and are consistent with the action of aberrantly filtered serine proteases or proteasuria.


Asunto(s)
Síndrome Nefrótico , Serina Endopeptidasas , Sodio , Animales , Doxorrubicina/farmacología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Ratones , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Sodio/metabolismo , Triantereno
4.
Development ; 146(22)2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628112

RESUMEN

Syndromic congenital tufting enteropathy (CTE) is a life-threatening recessive human genetic disorder that is caused by mutations in SPINT2, encoding the protease inhibitor HAI-2, and is characterized by severe intestinal dysfunction. We recently reported the generation of a Spint2-deficient mouse model of CTE. Here, we show that the CTE-associated early-onset intestinal failure and lethality of Spint2-deficient mice is caused by unchecked activity of the serine protease matriptase. Macroscopic and histological defects observed in the absence of HAI-2, including villous atrophy, luminal bleeding, loss of mucin-producing goblet cells, loss of defined crypt architecture and the resulting acute inflammatory response in the large intestine, were all prevented by intestinal-specific inactivation of the St14 gene encoding matriptase. The CTE-associated loss of the cell junctional proteins EpCAM and claudin 7 was also prevented. As a result, inactivation of intestinal matriptase allowed Spint2-deficient mice to gain weight after birth and dramatically increased their lifespan. These data implicate matriptase as a causative agent in the development of CTE and may provide a new target for the treatment of CTE in individuals carrying SPINT2 mutations.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Diarrea Infantil/genética , Diarrea Infantil/patología , Intestinos/patología , Síndromes de Malabsorción/genética , Síndromes de Malabsorción/patología , Proteínas de la Membrana/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Animales , Claudinas/metabolismo , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Molécula de Adhesión Celular Epitelial/metabolismo , Epitelio/metabolismo , Femenino , Genotipo , Hemorragia , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo
5.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743186

RESUMEN

The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.


Asunto(s)
Aldosterona , Sodio , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Riñón/metabolismo , Ratones , Oligopéptidos , Serina Endopeptidasas , Sodio/metabolismo
6.
J Biol Chem ; 294(44): 15987-15996, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501243

RESUMEN

Elucidation of gene function by reverse genetics in animal models frequently is complicated by the functional redundancy of homologous genes. This obstacle often is compounded by the tight clustering of homologous genes, which precludes the generation of multigene-deficient animals through standard interbreeding of single-deficient animals. Here, we describe an iterative, multiplexed CRISPR-based approach for simultaneous gene editing in the complex seven-member human airway trypsin-like protease/differentially expressed in a squamous cell carcinoma (HAT/DESC) cluster of membrane-anchored serine proteases. Through four cycles of targeting, we generated a library of 18 unique congenic mouse strains lacking combinations of HAT/DESC proteases, including a mouse strain deficient in all seven proteases. Using this library, we demonstrate that HAT/DESC proteases are dispensable for term development, postnatal health, and fertility and that the recently described function of the HAT-like 4 protease in epidermal barrier formation is unique among all HAT/DESC proteases. The study demonstrates the potential of iterative, multiplexed CRISPR-mediated gene editing for functional analysis of multigene clusters, and it provides a large array of new congenic mouse strains for the study of HAT/DESC proteases in physiological and in pathophysiological processes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Familia de Multigenes , Serina Endopeptidasas/genética , Animales , Desarrollo Embrionario/genética , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , Femenino , Fertilidad/genética , Células HEK293 , Humanos , Masculino , Ratones , Serina Endopeptidasas/metabolismo
7.
Biochem Soc Trans ; 48(2): 517-528, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32196551

RESUMEN

Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.


Asunto(s)
Membrana Celular/enzimología , Células Epiteliales/enzimología , Serina Proteasas/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Matriz Extracelular/metabolismo , Humanos , Iones , Proteínas de la Membrana/metabolismo , Ratones , Serina Endopeptidasas/metabolismo
8.
Development ; 143(15): 2818-28, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385010

RESUMEN

The membrane-anchored serine proteases prostasin (PRSS8) and matriptase (ST14) initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically inactive prostasin are viable, unlike prostasin null mice, indicating that at least some prostasin functions are non-proteolytic. Here we used knock-in mice expressing catalytically inactive prostasin (Prss8(Ki/Ki)) to show that the physiological and pathological functions of prostasin vary in their dependence on its catalytic activity. Whereas prostasin null mice exhibited partial embryonic and complete perinatal lethality, Prss8(Ki/Ki) mice displayed normal prenatal and postnatal survival. Unexpectedly, catalytically inactive prostasin caused embryonic lethality in mice lacking its cognate inhibitors HAI-1 (SPINT1) or HAI-2 (SPINT2). Proteolytically inactive prostasin, unlike the wild-type protease, was unable to activate matriptase during placentation. Surprisingly, all essential functions of prostasin in embryonic and postnatal development were compensated for by loss of HAI-1, indicating that prostasin is only required for mouse development and overall viability in the presence of this inhibitor. This study expands our knowledge of non-proteolytic functions of membrane-anchored serine proteases and provides unexpected new data on the mechanistic interactions between matriptase and prostasin in the context of epithelial development.


Asunto(s)
Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Animales , Femenino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Placentación , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras , Proteolisis , Serina Endopeptidasas/genética , Serina Proteasas/genética
9.
Blood ; 127(25): 3260-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27114461

RESUMEN

The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.


Asunto(s)
Coagulación Sanguínea/fisiología , Células Epiteliales/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Tromboplastina/fisiología , Línea Celular Tumoral , Activación Enzimática , Factor VIIa/metabolismo , Factor Xa/metabolismo , Células HeLa , Humanos , Células MCF-7 , Proteínas Mutantes/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transducción de Señal
10.
Blood ; 127(9): 1085-96, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26647393

RESUMEN

Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMß2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.


Asunto(s)
Endocitosis , Fibrina/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Bioensayo , Receptor 1 de Quimiocinas CX3C , Proliferación Celular , Fibrinolisina/metabolismo , Ratones , Células Mieloides/metabolismo , Plasminógeno/metabolismo , Activadores Plasminogénicos/metabolismo , Proteolisis , Receptores de Quimiocina/metabolismo , Receptores de Péptidos/metabolismo
11.
PLoS Genet ; 10(7): e1004470, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25078604

RESUMEN

The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival.


Asunto(s)
Relaciones Madre-Hijo , Oligopéptidos/genética , Placentación , Serina Endopeptidasas/genética , Animales , Supervivencia Celular/genética , Claudina-1/metabolismo , Femenino , Ratones , Morfogénesis/genética , Oligopéptidos/metabolismo , Placenta/metabolismo , Embarazo , Serina Endopeptidasas/metabolismo , Transducción de Señal/genética
12.
J Biol Chem ; 289(21): 14740-9, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24706745

RESUMEN

The membrane-anchored serine protease prostasin (CAP1/PRSS8) is part of a cell surface proteolytic cascade that is essential for epithelial barrier formation and homeostasis. Here, we report the surprising finding that prostasin executes these functions independent of its own enzymatic activity. Prostasin null (Prss8(-/-)) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders prostasin catalytically inactive (Prss8(Cat-/Cat-) mice), develop barrier function and are healthy when followed for up to 20 weeks. This striking difference could not be explained by genetic modifiers or by maternal effects, as these divergent phenotypes were displayed by Prss8(-/-) and Prss8(Cat-/Cat-) mice born within the same litter. Furthermore, Prss8(Cat-/Cat-) mice were able to regenerate epidermal covering following cutaneous wounding. This study provides the first demonstration that essential in vivo functions of prostasin are executed by a non-enzymatic activity of this unique membrane-anchored serine protease.


Asunto(s)
Membrana Celular/enzimología , Epidermis/enzimología , Homeostasis/fisiología , Serina Endopeptidasas/metabolismo , Animales , Animales Recién Nacidos , Biocatálisis , Western Blotting , Peso Corporal/genética , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , Homeostasis/genética , Homocigoto , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Puntual , Serina Endopeptidasas/genética
13.
Biochem J ; 461(3): 487-95, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24832573

RESUMEN

Membrane-anchored serine proteases serve as important regulators of multiple developmental and homoeostatic processes in mammals. TMPRSS13 (transmembrane protease, serine 13; also known as mosaic serine protease large-form, MSPL) is a membrane-anchored serine protease with unknown biological functions. In the present study, we used mice with the Tmprss13 gene disrupted by a ß-galactosidase-neomycin fusion gene insertion to study the expression and function of the membrane-anchored serine protease. High levels of Tmprss13 expression were found in the epithelia of the oral cavity, upper digestive tract and skin. Compatible with this expression pattern, Tmprss13-deficient mice displayed abnormal skin development, leading to a compromised barrier function, as measured by the transepidermal fluid loss rate of newborn mice. The present study provides the first biological function for the transmembrane serine protease TMPRSS13.


Asunto(s)
Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Equilibrio Hidroelectrolítico , Animales , Cruzamientos Genéticos , Células Epidérmicas , Epidermis/embriología , Epidermis/patología , Heterocigoto , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Bucal/citología , Mucosa Bucal/embriología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Membrana Mucosa/citología , Membrana Mucosa/embriología , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Proteínas Recombinantes de Fusión/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Proteasas/efectos de los fármacos , Serina Proteasas/genética , Tracto Gastrointestinal Superior/citología , Tracto Gastrointestinal Superior/embriología , Tracto Gastrointestinal Superior/metabolismo , Tracto Gastrointestinal Superior/patología , Vejiga Urinaria/citología , Vejiga Urinaria/embriología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Desequilibrio Hidroelectrolítico/embriología , Desequilibrio Hidroelectrolítico/genética , Desequilibrio Hidroelectrolítico/metabolismo , Desequilibrio Hidroelectrolítico/patología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
14.
PLoS Genet ; 8(8): e1002937, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952456

RESUMEN

Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.


Asunto(s)
Glicoproteínas de Membrana , Proteínas de la Membrana , Serina Endopeptidasas , Animales , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Epistasis Genética , Femenino , Genes Letales , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Tubo Neural/embriología , Tubo Neural/metabolismo , Placentación/genética , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras , Receptores Proteinasa-Activados/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología
15.
J Biol Chem ; 288(17): 12232-43, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23467409

RESUMEN

G protein-coupled receptors (GPCRs) linked to both members of the Gα12 family of heterotrimeric G proteins α subunits, Gα12 and Gα13, regulate the activation of Rho GTPases, thereby contributing to many key biological processes. Multiple Rho GEFs have been proposed to link Gα12/13 GPCRs to Rho activation, including PDZ-RhoGEF (PRG), leukemia-associated Rho GEF (LARG), p115-RhoGEF (p115), lymphoid blast crisis (Lbc), and Dbl. PRG, LARG, and p115 share the presence of a regulator of G protein signaling homology (RGS) domain. There is limited information on the biological roles of this RGS-containing family of RhoGEFs in vivo. p115-deficient mice are viable with some defects in the immune system and gastrointestinal motor dysfunctions, whereas in an initial study we showed that mice deficient for Larg are viable and resistant to salt-induced hypertension. Here, we generated knock-out mice for Prg and observed that these mice do not display any overt phenotype. However, deficiency in Prg and Larg leads to complex developmental defects and early embryonic lethality. Signaling from Gα11/q-linked GPCRs to Rho was not impaired in mouse embryonic fibroblasts defective in all three RGS-containing RhoGEFs. However, a combined lack of Prg, Larg, and p115 expression abolished signaling through Gα12/13 to Rho and thrombin-induced cell proliferation, directional migration, and nuclear signaling through JNK and p38. These findings provide evidence of an essential role for the RGS-containing RhoGEF family in signaling to Rho by Gα12/13-coupled GPCRs, which may likely play a critical role during embryonic development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Trombina/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Proliferación Celular , Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Ratones Noqueados , Receptores del Ácido Lisofosfatídico/genética , Receptores de Trombina/genética , Factores de Intercambio de Guanina Nucleótido Rho , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/genética
16.
Exp Cell Res ; 319(6): 918-29, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23333561

RESUMEN

Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where it is activated, as judged by cleavage at Arg614 and increased peptidolytic activity of the cell extracts. Mutagenesis of Kunitz domain 1 but not Kunitz domain 2 abolished this function of HAI-2. HAI-2 seems to carry out its function intracellularly as this is where the vast majority of HAI-2 is located and since HAI-2 could not be detected on the basolateral plasma membrane where matriptase resides. However, minor amounts of HAI-2 not undergoing endocytosis could be detected on the apical plasma membrane. Our results suggest that Kunitz domain 1 of HAI-2 cause matriptase to accumulate in a membrane-bound form on the basolateral plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Biomarcadores/metabolismo , Células CHO , Células CACO-2 , Membrana Celular/enzimología , Membrana Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Cricetinae , Medios de Cultivo/metabolismo , Citoplasma/enzimología , Citoplasma/genética , Citoplasma/metabolismo , Perros , Electroforesis en Gel de Poliacrilamida , Endocitosis , Retículo Endoplásmico/metabolismo , Activación Enzimática , Humanos , Proteínas Luminiscentes/metabolismo , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/genética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Transfección
17.
Proc Natl Acad Sci U S A ; 107(9): 4200-5, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20142489

RESUMEN

The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER). Matriptase is expressed during intestinal epithelial differentiation and colocalizes with E-cadherin to apical junctional complexes (AJC) in differentiated polarized Caco-2 monolayers. Inhibition of matriptase activity using a specific peptide inhibitor or by knockdown of matriptase by siRNA disrupts the development of TEER in barrier-forming Caco-2 monolayers and increases paracellular permeability to macromolecular FITC-dextran. Loss of matriptase was associated with enhanced expression and incorporation of the permeability-associated, "leaky" tight junction protein claudin-2 at intercellular junctions. Knockdown of claudin-2 enhanced the development of TEER in matriptase-silenced Caco-2 monolayers, suggesting that the reduced barrier integrity was caused, at least in part, by an inability to regulate claudin-2 expression and incorporation into junctions. We find that matriptase enhances the rate of claudin-2 protein turnover, and that this is mediated indirectly through an atypical PKCzeta-dependent signaling pathway. These results support a key role for matriptase in regulating intestinal epithelial barrier competence, and suggest an intriguing link between pericellular serine protease activity and tight junction assembly in polarized epithelia.


Asunto(s)
Mucosa Intestinal/metabolismo , Serina Endopeptidasas/metabolismo , Células CACO-2 , Membrana Celular/enzimología , Proliferación Celular , Claudinas , Silenciador del Gen , Humanos , Proteínas de la Membrana/metabolismo , Permeabilidad , Proteína Quinasa C/metabolismo , ARN Interferente Pequeño , Serina Endopeptidasas/genética , Transducción de Señal
18.
Cells ; 12(19)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37830556

RESUMEN

The serine proteases CAP1/Prss8 and CAP3/St14 are identified as ENaC channel-activating proteases in vitro, highly suggesting that they are required for proteolytic activation of ENaC in vivo. The present study tested whether CAP3/St14 is relevant for renal proteolytic ENaC activation and affects ENaC-mediated Na+ absorption following Na+ deprivation conditions. CAP3/St14 knockout mice exhibit a significant decrease in CAP1/Prss8 protein expression with altered ENaC subunit and decreased pNCC protein abundances but overall maintain sodium balance. RNAscope-based analyses reveal co-expression of CAP3/St14 and CAP1/Prss8 with alpha ENaC in distal tubules of the cortex from wild-type mice. Double CAP1/Prss8; CAP3/St14-deficiency maintained Na+ and K+ balance on a Na+-deprived diet, restored ENaC subunit protein abundances but showed reduced NCC activity under Na+ deprivation. Overall, our data clearly show that CAP3/St14 is not required for direct proteolytic activation of ENaC but for its protein abundance. Our study reveals a complex regulation of ENaC by these serine proteases on the expression level rather than on its proteolytic activation.


Asunto(s)
Canales Epiteliales de Sodio , Serina Proteasas , Animales , Ratones , Riñón , Canales Epiteliales de Sodio/metabolismo
19.
Biochem Biophys Res Commun ; 422(3): 393-7, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22575514

RESUMEN

Capillary morphogenesis protein-2 (CMG2) functions as an anthrax toxin receptor that plays an essential role in anthrax pathogenesis. Although mutations in CMG2 have been identified to cause two human autosomal recessive disorders, Juvenile Hyaline Fibromatosis and Infantile Systemic Hyalinosis, both characterized by excess hyaline material deposition in connective tissues, the physiologic function of CMG2 remains elusive. To study the roles of CMG2 in normal physiology, here we performed detailed histological analyses of the CMG2-null mice we generated previously. While no morphological or histological defects were observed in CMG2(-/-) male mice, CMG2(-/-) female mice were unable to produce any offspring due to a defect in parturition. We found that deletion of CMG2 resulted in a diffuse deposition of collagen within the myometrium of CMG2(-/-) females, causing remarkable morphological changes to their uteri. This collagen accumulation also led to loss of smooth muscle cells in the myometrium of CMG2(-/-) mice, apparently disabling uterine contractile function during parturition. As a consequence, even though pregnant CMG2(-/-) mice were able to carry the gestation to full term, they were unable to deliver pups. However, the fully-developed fetuses could be successfully delivered by Cesarean section and survived to adulthood when fostered. Our results demonstrate that CMG2 is not required for normal mouse embryonic development but is indispensable for murine parturition. In parallel to its role in anthrax toxin binding and internalization, herein we provide evidence that CMG2 may function as a collagen receptor which is essential for maintaining collagen homeostasis in the uterus.


Asunto(s)
Colágeno/fisiología , Homeostasis , Parto/fisiología , Receptores de Péptidos/fisiología , Útero/fisiología , Animales , Desarrollo Embrionario/genética , Femenino , Fibroblastos/metabolismo , Eliminación de Gen , Ratones , Células Mieloides/metabolismo , Parto/genética , Embarazo , Receptores de Péptidos/genética
20.
Biol Open ; 11(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730316

RESUMEN

Epithelial cell adhesion molecule (EPCAM) is a transmembrane glycoprotein expressed on the surface of most epithelial and epithelium-derived tumor cells and reported to regulate stability of epithelial tight junction proteins, claudins. Despite its widespread expression, loss of EPCAM function has so far only been reported to prominently affect intestinal development, resulting in severe early onset enteropathy associated with impaired growth and decreased survival in both humans and mice. In this study, we show that the critical role of EPCAM is not limited to intestinal tissues and that it shares its essential function with its only known homolog, Trophoblast cell surface antigen 2 (TROP2). EPCAM-deficient mice show significant growth retardation and die within 4 weeks after birth. In addition to changes in small and large intestines, loss of EPCAM results in hyperkeratosis in the skin and forestomach, hair follicle atrophy leading to alopecia, nephron hypoplasia in the kidney, proteinuria, and altered production of digestive enzymes by the pancreas. Expression of TROP2 partially, but not completely, overlaps with EPCAM in a number developing epithelia. Although loss of TROP2 had no gross impact on mouse development and survival, TROP2 deficiency generally compounded developmental defects observed in EPCAM-deficient mice, led to an approximately 60% decrease in embryonic viability, and further shortened postnatal lifespan of born pups. Importantly, TROP2 was able to compensate for the loss of EPCAM in stabilizing claudin-7 expression and cell membrane localization in tissues that co-express both proteins. These findings identify overlapping functions of EPCAM and TROP2 as regulators of epithelial development in both intestinal and extraintestinal tissues.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Claudinas , Intestinos , Animales , Claudinas/genética , Claudinas/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Epitelio/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA