RESUMEN
Poxviruses use virus-encoded multisubunit RNA polymerases (vRNAPs) and RNA-processing factors to generate m7G-capped mRNAs in the host cytoplasm. In the accompanying paper, we report structures of core and complete vRNAP complexes of the prototypic Vaccinia poxvirus (Grimm et al., 2019; in this issue of Cell). Here, we present the cryo-electron microscopy (cryo-EM) structures of Vaccinia vRNAP in the form of a transcribing elongation complex and in the form of a co-transcriptional capping complex that contains the viral capping enzyme (CE). The trifunctional CE forms two mobile modules that bind the polymerase surface around the RNA exit tunnel. RNA extends from the vRNAP active site through this tunnel and into the active site of the CE triphosphatase. Structural comparisons suggest that growing RNA triggers large-scale rearrangements on the surface of the transcription machinery during the transition from transcription initiation to RNA capping and elongation. Our structures unravel the basis for synthesis and co-transcriptional modification of poxvirus RNA.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Metiltransferasas/química , Complejos Multienzimáticos/química , Nucleotidiltransferasas/química , Monoéster Fosfórico Hidrolasas/química , Virus Vaccinia/ultraestructura , Proteínas Virales/química , Microscopía por Crioelectrón , Complejos Multienzimáticos/ultraestructura , ARN Mensajero/química , Imagen Individual de Molécula , Transcripción Genética , Virus Vaccinia/genética , Virus Vaccinia/metabolismoRESUMEN
Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm. We report cryo-EM structures of core and complete vRNAP enzymes from Vaccinia virus at 2.8 Å resolution. The vRNAP core enzyme resembles eukaryotic RNA polymerase II (Pol II) but also reveals many virus-specific features, including the transcription factor Rap94. The complete enzyme additionally contains the transcription factor VETF, the mRNA processing factors VTF/CE and NPH-I, the viral core protein E11, and host tRNAGln. This complex can carry out the entire early transcription cycle. The structures show that Rap94 partially resembles the Pol II initiation factor TFIIB, that the vRNAP subunit Rpo30 resembles the Pol II elongation factor TFIIS, and that NPH-I resembles chromatin remodeling enzymes. Together with the accompanying paper (Hillen et al., 2019), these results provide the basis for unraveling the mechanisms of poxvirus transcription and RNA processing.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Factores de Transcripción/química , Virus Vaccinia/ultraestructura , Proteínas Virales/química , Microscopía por Crioelectrón , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Imagen Individual de Molécula , Virus Vaccinia/genética , Virus Vaccinia/metabolismoRESUMEN
BACKGROUND: Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. METHODS: To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. RESULTS: Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. CONCLUSIONS: Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.
Asunto(s)
Tejido Adiposo/citología , Células Madre Adultas/trasplante , Células Alogénicas/inmunología , Tolerancia Inmunológica , Viroterapia Oncolítica/métodos , Virus Oncolíticos , Virus Vaccinia/fisiología , Células A549 , Inmunidad Adaptativa/fisiología , Tejido Adiposo/inmunología , Células Madre Adultas/inmunología , Células Madre Adultas/virología , Células Alogénicas/citología , Animales , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Células Cultivadas , Chlorocebus aethiops , Humanos , Inmunidad Innata/fisiología , Inmunomodulación/fisiología , Inmunoterapia Adoptiva/métodos , Células K562 , Ratones , Virus Oncolíticos/inmunología , Trasplante Homólogo/métodos , Virus Vaccinia/inmunologíaRESUMEN
BACKGROUND: ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). METHODS: Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. RESULTS: No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days-an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. CONCLUSIONS: Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN#10201650) on October 22, 2018.
Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/citología , Virus Oncolíticos/fisiología , Timidina Quinasa/metabolismo , Virus Vaccinia/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , ADN Viral/sangre , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Viroterapia Oncolítica/efectos adversos , Células del Estroma/metabolismo , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. METHODS: Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS+ myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. RESULTS: Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b+ ly6G+ myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS+ MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. CONCLUSIONS: We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.
Asunto(s)
Citotoxicidad Inmunológica , Células Mieloides/inmunología , Virus Oncolíticos/fisiología , Virus Vaccinia/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Proliferación Celular , Células HCT116 , Humanos , Cinética , Masculino , Ratones Desnudos , Neutrófilos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Carga TumoralRESUMEN
We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.
Asunto(s)
Hipertermia Inducida/métodos , Rayos Láser , Imagen por Resonancia Magnética , Melaninas/biosíntesis , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Virus Vaccinia/metabolismo , Animales , Células HeLa , Humanos , Rayos Infrarrojos , Ratones , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patologíaRESUMEN
Isolated limb perfusion (ILP) is a treatment for advanced extremity sarcoma and in-transit melanoma. Advancing this procedure by investigating the addition of novel agents, such as cancer-selective oncolytic viruses, may improve both the therapeutic efficacy of ILP and the tumour-targeted delivery of oncolytic virotherapy. Standard in vitro assays were used to characterise single agent and combinatorial activities of melphalan, tumour necrosis factor-alpha (TNF-α) and Lister strain vaccinia virus (GLV-1h68) against BN175 rat sarcoma cells. An orthotopic model of advanced extremity sarcoma was used to evaluate survival of animals after ILP with combinations of TNF-α, melphalan and GLV-1h68. We investigated the efficiency of viral tumour delivery by ILP compared to intravenous therapy, the locoregional and systemic biodistribution of virus after ILP, and the effect of mode of administration on antibody response. The combination of melphalan and GLV-1h68 was synergistic in vitro. The addition of virus to standard ILP regimens was well tolerated and demonstrated superior tumour targeting compared to intravenous administration. Triple therapy (melphalan/TNF-α/GLV-1h68) resulted in increased tumour growth delay and enhanced survival compared to other treatment regimens. Live virus was recovered in large amounts from perfused regions, but in smaller amounts from systemic organs. The addition of oncolytic vaccinia virus to existing TNF-α/melphalan-based ILP strategies results in survival advantage in an immunocompetent rat model of advanced extremity sarcoma. Virus administered by ILP has superior tumour targeting compared to intravenous delivery. Further evaluation and clinical translation of this approach is warranted.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Miembro Posterior/patología , Virus Oncolíticos/fisiología , Sarcoma Experimental/terapia , Virus Vaccinia/fisiología , Animales , Apoptosis , Línea Celular Tumoral , Quimioterapia del Cáncer por Perfusión Regional , Terapia Combinada , Miembro Posterior/efectos de los fármacos , Humanos , Masculino , Melfalán/administración & dosificación , Trasplante de Neoplasias , Ratas Endogámicas , Sarcoma Experimental/irrigación sanguínea , Sarcoma Experimental/patología , Factor de Necrosis Tumoral alfa/administración & dosificaciónRESUMEN
UNLABELLED: Exogenous gene induction of therapeutic, diagnostic, and safety mechanisms could be a considerable improvement in oncolytic virotherapy. Here, we introduced a doxycycline-inducible promoter system (comprised of a tetracycline repressor, several promoter constructs, and a tet operator sequence) into oncolytic recombinant vaccinia viruses (rVACV), which were further characterized in detail. Experiments in cell cultures as well as in tumor-bearing mice were analyzed to determine the role of the inducible-system components. To accomplish this, we took advantage of the optical reporter construct, which resulted in the production of click-beetle luciferase as well as a red fluorescent protein. The results indicated that each of the system components could be used to optimize the induction rates and had an influence on the background expression levels. Depending on the given gene to be induced in rVACV-colonized tumors of patients, we discuss the doxycycline-inducible promoter system adjustment and further optimization. IMPORTANCE: Oncolytic virotherapy of cancer can greatly benefit from the expression of heterologous genes. It is reasonable that some of those heterologous gene products could have detrimental effects either on the cancer patient or on the oncolytic virus itself if they are expressed at the wrong time or if the expression levels are too high. Therefore, exogenous control of gene expression levels by administration of a nontoxic inducer will have positive effects on the safety as well as the therapeutic outcome of oncolytic virotherapy. In addition, it paves the way for the introduction of new therapeutic genes into the genome of oncolytic viruses that could not have been tested otherwise.
Asunto(s)
Adenocarcinoma/terapia , Neoplasias Pulmonares/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Chlorocebus aethiops , Doxiciclina/farmacología , Fibroblastos/patología , Fibroblastos/virología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Vectores Genéticos , Células HeLa , Xenoinjertos , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Replicación Viral , Proteína Fluorescente RojaRESUMEN
BACKGROUND: Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. METHODS: VACV LIVP 1.1.1 replication in C57BL/6 and Foxn1(nu/nu) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. RESULTS: We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of Iba1(+) microglia and GFAP(+) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. CONCLUSION: Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development.
Asunto(s)
Astrocitos/patología , Glioma/patología , Glioma/virología , Microglía/patología , Virus Oncolíticos/fisiología , Virus Vaccinia/fisiología , Replicación Viral , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/virología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Citometría de Flujo , Humanos , Inyecciones Intralesiones , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Necrosis , Virus Oncolíticos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Virus Vaccinia/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
We investigated the therapeutic efficacy of a replication-competent oncolytic vaccinia virus, GLV-1h153, carrying human sodium iodide symporter (hNIS), in combination with radioiodine in an orthotopic triple-negative breast cancer (TNBC) murine model. In vitro viral infection was confirmed by immunoblotting and radioiodine uptake assays. Orthotopic xenografts (MDA-MB-231 cells) received intratumoral injection of GLV-1h153 or PBS. One week after viral injection, xenografts were randomized into 4 treatment groups: GLV-1h153 alone, GLV-1h153 and (131)I (â¼ 5 mCi), (131)I alone, or PBS, and followed for tumor growth. Kruskal-Wallis and Wilcoxon tests were performed for statistical analysis. Radiouptake assay showed a 178-fold increase of radioiodine uptake in hNIS-expressing infected cells compared with PBS control. Systemic (131)I-iodide in combination with GLV-1h153 resulted in a 6-fold increase in tumor regression (24 compared to 146 mm(3) for the virus-only treatment group; P<0.05; d 40). We demonstrated that a novel vaccinia virus, GLV-1h153, expresses hNIS, increases the expression of the symporter in TNBC cells, and serves both as a gene marker for noninvasive imaging of virus and as a vehicle for targeted radionuclide therapy with (131)I.
Asunto(s)
Radioisótopos de Yodo/uso terapéutico , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/terapia , Virus Vaccinia/fisiología , Animales , Western Blotting , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Virus Vaccinia/genéticaRESUMEN
Vascular endothelial growth factor (VEGF) expression is higher in triple-negative breast cancers (TNBC) compared to other subtypes and is reported to predict incidence of distant metastases and shorter overall survival. We investigated the therapeutic impact of a vaccinia virus (VACV) GLV-1h164 (derived from its parent virus GLV-1h100), encoding a single-chain antibody (scAb) against VEGF (GLAF-2) in an orthotopic TNBC murine model. GLV-1h164 was tested against multiple TNBC cell lines. Viral infectivity, cytotoxicity, and replication were determined. Mammary fat pad tumors were generated in athymic nude mice using MDA-MB-231 cells. Xenografts were treated with GLV-1h164, GLV-1h100, or PBS and followed for tumor growth. Viral infectivity was time- and concentration-dependent. GLV-1h164 killed TNBC cell lines in a dose-dependent fashion with greater than 90% cytotoxicity within 4 days at a multiplicity of infection of 5.0. In vitro, cytotoxicity of GLV-1h164 was identical to GLV-1h100. GLV-1h164 replicated efficiently in all cell lines with an over 400-fold increase in copy numbers from the initial viral dose within 4 days. In vivo, mean tumor volumes after 2 weeks of treatment were 73, 191, and 422 mm(3) (GLV-1h164, GLV-1h100, and PBS, respectively) (p < 0.05). Both in vivo Doppler ultrasonography and immuno-staining showed decreased neo-angiogenesis in GLV-1h164-treated tumors compared to both GLV-1h100 and PBS controls (p < 0.05). This is the first study to demonstrate efficient combination of oncolytic and anti-angiogenic activity of a novel VACV on TNBC xenografts. Our results suggest that GLV-1h164 is a promising therapeutic agent that warrants testing for patients with TNBC.
Asunto(s)
Neovascularización Patológica/terapia , Virus Oncolíticos/genética , Neoplasias de la Mama Triple Negativas/terapia , Virus Vaccinia/genética , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/genética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/virología , Viroterapia Oncolítica/métodos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/virología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. METHODS: PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. RESULTS: GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. CONCLUSIONS: CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.
Asunto(s)
Adenocarcinoma/terapia , Antineoplásicos Alquilantes/uso terapéutico , Ciclofosfamida/uso terapéutico , Neoplasias Pulmonares/terapia , Viroterapia Oncolítica , Virus Vaccinia , Adenocarcinoma/tratamiento farmacológico , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia.
Asunto(s)
Anemia/terapia , Eritropoyetina/metabolismo , Neoplasias Pulmonares/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Anemia/complicaciones , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Eritropoyetina/genética , Proteínas Fluorescentes Verdes , Humanos , Neoplasias Hepáticas Experimentales , Masculino , Ratones , Ratones Desnudos , Microvasos/metabolismo , Virus Oncolíticos/metabolismo , Proteínas Recombinantes/metabolismo , Virus Vaccinia/metabolismo , Replicación Viral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
INTRODUCTION: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. METHODS: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 µCi of 124I-iodide. RESULTS: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time- and concentration-dependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( <10,000-fold increase from the initial viral dose ) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm3 versus 168 mm3 in untreated controls (P < 0.05). CONCLUSIONS: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors.
Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Neoplasia Residual/patología , Neoplasia Residual/prevención & control , Simportadores/metabolismo , Virus Vaccinia/fisiología , Replicación Viral , Animales , Neoplasias de la Mama/virología , Muerte Celular , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Desnudos , Neoplasia Residual/virología , Tomografía de Emisión de Positrones , Simportadores/genéticaRESUMEN
Oncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload. Here, we show how vaccinia virus-mediated expression of a single-chain antibody targeting VEGF resulted in radiosensitization of the tumor-associated vasculature. Cell culture experiments demonstrated that purified vaccinia virus encoded antibody targeting VEGF reversed VEGF-induced radioresistance specifically in endothelial cells but not tumor cells. In a subcutaneous model of U-87 glioma, systemically administered oncolytic vaccinia virus expressing anti-VEGF antibody (GLV-1h164) in combination with fractionated irradiation resulted in enhanced tumor growth inhibition when compared to nonanti-VEGF expressing oncolytic virus (GLV-1h68) and irradiation. Irradiation of tumor xenografts resulted in an increase in VACV replication of both GLV-1h68 and GLV-1h164. However, GLV-1h164 in combination with irradiation resulted in a drastic decrease in intratumoral VEGF levels and tumor vessel numbers in comparison to GLV-1h68 and irradiation. These findings demonstrate the incorporation of an oncolytic virus expressing an anti-VEGF antibody (GLV-1h164) into a fractionated radiation scheme to target tumor cells by enhanced VACV replication in irradiated tumors as well as to radiosensitize tumor endothelium which results in enhanced efficacy of combination therapy of human glioma xenografts.
Asunto(s)
Endotelio Vascular/efectos de la radiación , Glioma/terapia , Viroterapia Oncolítica/métodos , Tolerancia a Radiación , Virus Vaccinia/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Glioma/irrigación sanguínea , Humanos , Masculino , Ratones , Factor A de Crecimiento Endotelial Vascular/fisiologíaRESUMEN
BACKGROUND: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. METHODS: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. RESULTS: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke's type A-stage HCT-116 and Duke's type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. CONCLUSION: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression.
Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Chlorocebus aethiops , Progresión de la Enfermedad , Humanos , Inyecciones Intravenosas , Macrófagos/metabolismo , Masculino , Ratones , Ratones Desnudos , Microscopía Fluorescente , Trasplante de NeoplasiasRESUMEN
BACKGROUND: Glioblastoma multiforme (GBM) is one of the most aggressive forms of cancer with a high rate of recurrence. We propose a novel oncolytic vaccinia virus (VACV)-based therapy using expression of the bone morphogenetic protein (BMP)-4 for treating GBM and preventing recurrence. METHODS: We have utilized clinically relevant, orthotopic xenograft models of GBM based on tumor-biopsy derived, primary cancer stem cell (CSC) lines. One of the cell lines, after being transduced with a cDNA encoding firefly luciferase, could be used for real time tumor imaging. A VACV that expresses BMP-4 was constructed and utilized for infecting several primary glioma cultures besides conventional serum-grown glioma cell lines. This virus was also delivered intracranially upon implantation of the GBM CSCs in mice to determine effects on tumor growth. RESULTS: We found that the VACV that overexpresses BMP-4 demonstrated heightened replication and cytotoxic activity in GBM CSC cultures with a broad spectrum of activity across several different patient-biopsy cultures. Intracranial inoculation of mice with this virus resulted in a tumor size equal to or below that at the time of injection. This resulted in survival of 100% of the treated mice up to 84 days post inoculation, significantly superior to that of a VACV lacking BMP-4 expression. When mice with a higher tumor burden were injected with the VACV lacking BMP-4, 80% of the mice showed tumor recurrence. In contrast, no recurrence was seen when mice were injected with the VACV expressing BMP-4, possibly due to induction of differentiation in the CSC population and subsequently serving as a better host for VACV infection and oncolysis. This lack of recurrence resulted in superior survival in the BMP-4 VACV treated group. CONCLUSIONS: Based on these findings we propose a novel VACV therapy for treating GBM, which would allow tumor specific production of drugs in the future in combination with BMPs which would simultaneously control tumor maintenance and facilitate CSC differentiation, respectively, thereby causing sustained tumor regression without recurrence.
Asunto(s)
Proteína Morfogenética Ósea 4/uso terapéutico , Glioblastoma/tratamiento farmacológico , Virus Vaccinia/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Proteína Morfogenética Ósea 4/farmacología , Efecto Espectador/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Glioblastoma/patología , Humanos , Huésped Inmunocomprometido , Masculino , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inducción de Remisión , Análisis de Supervivencia , Factores de Tiempo , Replicación Viral/efectos de los fármacosRESUMEN
BACKGROUND: Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. METHODS: In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. RESULTS: We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. CONCLUSIONS: Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.
Asunto(s)
Neoplasias Pulmonares/terapia , Viroterapia Oncolítica/métodos , Derrame Pleural Maligno/terapia , Animales , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Inyecciones Subcutáneas , Imagen por Resonancia Magnética , Ratones , Ratones Desnudos , Virus Oncolíticos/metabolismo , Anticuerpos de Cadena Única/química , Resultado del Tratamiento , Virus Vaccinia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.