Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vet Res ; 62(4): 549-554, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30729215

RESUMEN

INTRODUCTION: The aim of the study was the application and evaluation of real-time PCRs based on the fluorescence of SYBR Green I intercalating dye for the detection of three Bacillus anthracis genes in contaminated liver and blood samples. The goals for detection were rpoB gene as a chromosomal marker, pag gene located on plasmid pXO1, and capC gene located on plasmid pXO2. MATERIAL AND METHODS: Five B. anthracis strains were used for the experiments. Additionally, single strains of other species of the genus Bacillus, i.e. B. cereus, B. brevis, B. subtilis, and B. megaterium, and strains of six other species were used for evaluation of the specificity of the tests. Three SYBR Green I real-time PCRs were conducted allowing confirmation of B. anthracis in the biological samples. RESULTS: The observation of amplification curves in real-time PCRs enabled the detection of the chromosomally encoded rpoB gene, pag gene, and capC gene of B. anthracis. The specificity of the tests was confirmed by estimation of the melting temperature of the PCR products. The sensitivity and linearity of the reactions were determined using regression coefficients. Strains of other microbial species did not reveal real-time PCR products. CONCLUSION: All real-time PCRs for the detection of B. anthracis in biological samples demonstrated a significant sensitivity and high specificity.

2.
J Vet Res ; 61(4): 427-432, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29978105

RESUMEN

INTRODUCTION: The aim of the study was the application and comparison of real-time PCR methods based on the fluorescence of SYBR Green I intercalating dye and TaqMan probes for the detection of the 23S rDNA gene of Listeria spp. and the hlyA gene of Listeria monocytogenes in biological samples of the liver, brain, and blood. MATERIAL AND METHODS: Five strains of L. monocytogenes and single strains of each species L. ivanovii, L. innocua,L. grayi, L. welshimeri, and L. seeligeri were used for the experiments. Additionally, five strains of other species of bacteria were used for evaluation of the specificity of tests. In the first stage of the study SYBR Green I real-time PCRs, one allowing detection of the 23S rDNA gene and two based on the amplification the hlyA gene, were performed. In the next part, three TaqMan probe-based real-time PCRs allowing confirmation of belonging to Listeria spp. and L. monocytogenes were conducted. RESULTS: The observation of amplification curves in real-time PCRs enabled the detection of both genes. A high regression coefficient of 0.99 was found for all reactions. Specific amplification products were obtained for the 23S rDNA and hlyA genes which confirm their belonging to Listeria spp. and L. monocytogenes, respectively. Other microbial species did not reveal real-time PCR products. CONCLUSION: Both real-time PCR methods for the detection of Listeria spp. and L. monocytogenes in biological samples demonstrated a significant sensitivity and high specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA