RESUMEN
The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.
Asunto(s)
Opacidad de la Córnea , Epitelio Corneal , Limbo de la Córnea , Humanos , Limbo de la Córnea/metabolismo , Córnea/metabolismo , Epitelio Corneal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Opacidad de la Córnea/metabolismoRESUMEN
Aniridia-associated keratopathy originates from a haploinsufficiency of the transcription factor PAX6 (PAX6+/-). In the corneal epithelium of PAX6+/- mice, a significant increase in oxidized proteins was observed, accompanied by impaired compensation for elevated oxidative stress (OS). The extent to which limbal fibroblast cells (LFCs) are affected by an increased susceptibility to OS in cases of congenital aniridia (AN) has not been determined, yet. Our aim was to examine the impact of OS on antioxidant enzyme expression in normal and AN-LFCs. Following isolation and culture of primary LFCs (n = 8) and AN-LFCs (n = 8), cells were treated with cobalt chloride for 48 h to chemically induce hypoxic conditions and OS. Subsequently, HIF-1α/-2α, PHD1/2, Nrf2, CAT, SOD1, PRDX6, and GPX1 gene expression was examined by qPCR. SOD1, PRDX6, and GPX1 protein levels were assessed from the cell lysate by Western blot. The induction of hypoxia led to reduced HIF-1α gene expression in both fibroblast groups (p≤0.008), while the decrease in PHD1 was limited to AN-LFCs (p = 0.0007). On the other hand, under hypoxic conditions, PHD2 showed higher mRNA expression in AN-LFCs compared to normal LFCs (p = 0.013). As a result of OS, the mRNA levels of Nrf2 (p<0.0001) and the antioxidant enzymes CAT (p = 0.005), SOD1 (p = 0.005), GPX1 (p = 0.002) decreased in AN-LFCs. This was accompanied by an increased protein expression of SOD1 (p = 0.019) and PRDX6 (p=0.0009). In the normal LFC group, the induced extent of OS had no impact on the gene (p≥0.151) and protein expression (p ≥ 0.629) of antioxidant enzymes, except for the GPX1 mRNA level (p = 0.027). AN-LFCs exhibit higher susceptibility to OS than normal LFCs. Therefore, in AN-LFCs, there are sustained alterations in gene and protein expression of antioxidative enzymes even after 48 h of CoCl2 treatment.
RESUMEN
BACKGROUND: This study uses bootstrapping to evaluate the technical variability (in terms of model parameter variation) of Zernike corneal surface fit parameters based on Casia2 biometric data. METHODS: Using a dataset containing N = 6953 Casia2 biometric measurements from a cataractous population, a Fringe Zernike polynomial surface of radial degree 10 (36 components) was fitted to the height data. The fit error (height - reconstruction) was bootstrapped 100 times after normalisation. After reversal of normalisation, the bootstrapped fit errors were added to the reconstructed height, and characteristic surface parameters (flat/steep axis, radii, and asphericities in both axes) extracted. The median parameters refer to a robust surface representation for later estimates of elevation, whereas the SD of the 100 bootstraps refers to the variability of the surface fit. RESULTS: Bootstrapping gave median radius and asphericity values of 7.74/7.68 mm and -0.20/-0.24 for the corneal front surface in the flat/steep meridian and 6.52/6.37 mm and -0.22/-0.31 for the corneal back surface. The respective SD values for the 100 bootstraps were 0.0032/0.0028 mm and 0.0093/0.0082 for the front and 0.0126/0.0115 mm and 0.0366/0.0312 for the back surface. The uncertainties for the back surface are systematically larger as compared to the uncertainties of the front surface. CONCLUSION: As measured with the Casia2 tomographer, the fit parameters for the corneal back surface exhibit a larger degree of variability compared with those for the front surface. Further studies are needed to show whether these uncertainties are representative for the situation where actual repeat measurements are possible.
Asunto(s)
Córnea , Tomografía de Coherencia Óptica , Humanos , Topografía de la Córnea , BiometríaRESUMEN
BACKGROUND: Intraocular lenses (IOLs) require proper positioning in the eye to provide good imaging performance. This is especially important for premium IOLs. The purpose of this study was to develop prediction models for estimating IOL decentration, tilt and the axial IOL equator position (IOLEQ) based on preoperative biometric and tomographic measures. METHODS: Based on a dataset (N = 250) containing preoperative IOLMaster 700 and pre-/postoperative Casia2 measurements from a cataractous population, we implemented shallow feedforward neural networks and multilinear regression models to predict the IOL decentration, tilt and IOLEQ from the preoperative biometric and tomography measures. After identifying the relevant predictors using a stepwise linear regression approach and training of the models (150 training and 50 validation data points), the performance was evaluated using an N = 50 subset of test data. RESULTS: In general, all models performed well. Prediction of IOL decentration shows the lowest performance, whereas prediction of IOL tilt and especially IOLEQ showed superior performance. According to the 95% confidence intervals, decentration/tilt/IOLEQ could be predicted within 0.3 mm/1.5°/0.3 mm. The neural network performed slightly better compared to the regression, but without significance for decentration and tilt. CONCLUSION: Neural network or linear regression-based prediction models for IOL decentration, tilt and axial lens position could be used for modern IOL power calculation schemes dealing with 'real' IOL positions and for indications for premium lenses, for which misplacement is known to induce photic effects and image distortion.
Asunto(s)
Cristalino , Lentes Intraoculares , Humanos , Tomografía de Coherencia Óptica , Biometría , Ojo ArtificialRESUMEN
PURPOSE: To examine the in-vitro expression of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in corneal stromal cells by distinguishing between fibroblasts and keratocytes of healthy and keratoconus (KC) corneas. METHODS: Stromal cells were isolated from healthy and KC corneas (n = 8). A normal-glucose, serum-containing cell culture medium (NGSC-medium) was used for cultivation of healthy human corneal fibroblasts (HCFs) and KC human corneal fibroblasts (KC-HCFs). In order to obtain a keratocyte phenotype, the initial cultivation with NGSC-medium was changed to a low-glucose, serum-free cell culture medium for healthy (Keratocytes) and KC cells (KC-Keratocytes). Gene and protein expression of MMP-1, -2, -3, -7, -9 and TIMP-1, -2, -3 were measured by quantitative PCR and Enzyme-Linked Immunosorbent Assay (ELISA) from the cell culture supernatant. RESULTS: KC-HCFs demonstrated a lower mRNA gene expression for MMP-2 compared to HCFs. In contrast to their respective fibroblast groups (either HCFs or KC-HCFs), Keratocytes showed a higher mRNA gene expression of TIMP-3, whereas TIMP-1 mRNA gene expression was lower in Keratocytes and KC-Keratocytes. Protein analysis of the cell culture supernatant revealed lower concentrations of MMP-1 in KC-HCFs compared to HCFs. Compared to Keratocytes, TIMP-1 concentrations was lower in the cell culture supernatant of KC-Keratocytes. In HCFs and KC-HCFs, protein levels of MMP-1 and TIMP-1 were higher and MMP-2 was lower compared to Keratocytes and KC-Keratocytes, respectively. CONCLUSION: This study indicates an imbalance in MMP and TIMP expression between healthy and diseased cells. Furthermore, differences in the expression of MMPs and TIMPs exist between corneal fibroblasts and keratocytes, which could influence the specific proteolytic metabolism in-vivo and contribute to the progression of KC.
RESUMEN
BACKGROUND: Phakic lenses (PIOLs, the most common and only disclosed type being the implantable collamer lens, ICL) are used in patients with large or excessive ametropia in cases where laser refractive surgery is contraindicated. The purpose of this study was to present a strategy based on anterior segment OCT data for calculating the refraction correction (REF) and the change in lateral magnification (ΔM) with ICL implantation. METHODS: Based on a dataset (N = 3659) containing Casia 2 measurements, we developed a vergence-based calculation scheme to derive the REF and gain or loss in ΔM on implantation of a PIOL having power PIOLP. The calculation concept is based on either a thick or thin lens model for the cornea and the PIOL. In a Monte-Carlo simulation considering, all PIOL steps listed in the US patent 5,913,898, nonlinear regression models for REF and ΔM were defined for each PIOL datapoint. RESULTS: The calculation shows that simplifying the PIOL to a thin lens could cause some inaccuracies in REF (up to ½ dpt) and ΔM for PIOLs with high positive power. The full range of listed ICL powers (- 17 to 17 dpt) could correct REF in a range from - 17 to 12 dpt with a change in ΔM from 17 to - 25%. The linear regression considering anterior segment biometric data and the PIOLP was not capable of properly characterizing REF and ΔM, whereas the nonlinear model with a quadratic term for the PIOLP showed a good performance for both REF and ΔM prediction. CONCLUSION: Where PIOL design data are available, the calculation concept should consider the PIOL as thick lens model. For daily use, a nonlinear regression model can properly predict REF and ΔM for the entire range of PIOL steps if a vergence calculation is unavailable.
Asunto(s)
Cristalino , Lentes Intraoculares Fáquicas , Humanos , Implantación de Lentes Intraoculares , Tomografía de Coherencia Óptica , Cristalino/cirugía , Refracción OcularRESUMEN
PURPOSE: To provide insights into morphologic and functional features of eyes with complicated Descemet's membrane detachment (DMD) and report clinical outcomes after surgical intervention. METHODS: Retrospective study of 18 eyes with complicated DMD between 2010 and 2022. Complicated DMD was defined if any of the following criteria applied: prior penetrating keratoplasty (PKP), corneal thinning, total DMD or persistent DMD after Air/Gas-Descemetopexy. Causes, surgical management, and clinical outcomes were analyzed. Scheimpflug tomography, anterior segment optical coherence tomography (AS-OCT) and histologic examination were performed to characterize corneas with DMD. RESULTS: Fourteen eyes with prior PKP developed spontaneous DMD after 24.2 ± 12.9 years (range = 18 months - 47 years, median = 25.7 years). Complicated DMD without prior PKP was associated in three eyes after cataract surgery and in one eye after infectious keratitis. In cases with previous PKP, AS-OCT demonstrated rupture of Descemet's membrane (DM) in five eyes and spontaneous reattachment was found in four eyes within 8 weeks of initial diagnosis, with no rupture of DM in any of the cases. There was no rupture of DM in corneas without previous PKP. After prior keratoplasty, definitive surgical treatment was repeat PKP in 13 eyes and Air/Gas-Descemetopexy in one eye. In corneas without prior keratoplasty, three eyes underwent PKP and one eye Air/Gas-Descemetopexy. Histological examination of two corneal explants revealed a severely thinned graft-host junction and a disrupted DM close to the graft-host junction. Visual acuity improved from 1.80 ± 0.58 logMAR to 0.75 ± 0.69 logMAR after prior PKP and from 1.45 ± 0.65 logMAR to 0.85 ± 1.13 logMAR without prior PKP. The postoperative course was uneventful in 16 of 18 eyes. CONCLUSION: PKP is an effective treatment option for complicated DMD, especially in ectatic corneas, whereas Air/Gas-Descemetopexy or Descemet Membrane Endothelial Keratoplasty do not address the primary issue of the curvature anomaly.
Asunto(s)
Trasplante de Córnea , Lámina Limitante Posterior , Humanos , Lámina Limitante Posterior/cirugía , Estudios Retrospectivos , Córnea , Queratoplastia PenetranteRESUMEN
PURPOSE: To measure the retinal oxygen metabolic function with retinal oximetry (RO) in patients with choroideremia (CHM) and compare these findings with retinitis pigmentosa (RP) patients and controls. METHODS: Prospective observational study including 18 eyes of 9 molecularly confirmed CHM patients (9â; 40.2 ± 21.2 years (mean ± SD), 77 eyes from 39 patients with RP (15â 24â; 45.6 ± 14.7 years) and 100 eyes from 53 controls (31â 22â; 40.2 ± 13.4 years). Main outcome parameters were the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, and their difference (A-V SO2; %) recorded with the oxygen saturation tool of the Retinal Vessel Analyzer (IMEDOS Systems UG, Germany). Statistical analyses were performed with linear mixed-effects models. RESULTS: Eyes suffering from CHM differed significantly from both RP and control eyes, when the retinal oxygen metabolic parameters were taken into account. While RP showed significantly higher A-SO2 and V-SO2 values when compared to controls, CHM showed opposite findings with significantly lower values when compared to both RP and controls (P < 0.001). The A-V SO2, which represents the retinal oxygen metabolic consumption, showed significantly lower values in CHM compared to controls. CONCLUSION: The retina in CHM is a relatively hypoxic environment. The decrease in oxygen levels may be due to the profound choroidal degeneration, leading to decreased oxygen flux to the retina. RO measurements may help understand the pathogenesis of CHM and RP. These findings may provide useful details to inform the planning of clinical trials of emerging therapies for CHM. KEY MESSAGES: What was known before? Retinal oxygen metabolic function measured with retinal oximetry (RO) shows significant alterations in patients with retinitis pigmentosa. WHAT THIS STUDY ADDS: RO function in choroideremia is significantly altered when compared to controls. Furthermore, RO in choroideremia shows opposing findings within different oxygen metabolic parameters to those that were so far known for retinitis pigmentosa. By providing insights into the retinal oxygen metabolic mechanisms, RO can help understand the underlying pathophysiology in choroideremia.
RESUMEN
BACKGROUND: The purpose of this study was to simulate the impact of biometric measure uncertainties, lens equivalent and toric power labelling tolerances and axis alignment errors on the refractive outcome after cataract surgery with toric lens implantation. METHODS: In this retrospective non-randomised cross sectional Monte-Carlo simulation study we evaluated a dataset containing 7458 LenStar 900 preoperative biometric measurements. The biometric uncertainties from literature, lens power labelling according to ISO 11979, and axis alignment tolerances of a modern toric lens (Hoya Vivinex) were taken to be normally distributed and used in a Monte-Carlo simulation with 100 000 samples per eye. The target variable was the defocus equivalent (DEQ) derived using the Castrop (DEQC) and the Haigis (DEQH) formulae. RESULTS: Mean/median / 90% quantile DEQC was 0.22/0.21/0.36 D and DEQH was 0.20/0.19/0.32 D. Ignoring the variation in lens power labelling and toric axis alignment the respective DEQC was 0.20/0.19/0.32 D and DEQH was 0.18/0.17/0.29 D. DEQC and DEQH increased with shorter eyes, steeper corneas, equivalent lens power and highly with toric lens power. CONCLUSIONS: According to our simulation results, uncertainties in biometric measures, lens power labelling tolerances, and axis alignment errors are responsible for a significant part of the refraction prediction error after cataract surgery with toric lens implantation. Additional labelling of the exact equivalent and toric power on the lens package could be a step to improve postoperative results.
RESUMEN
BACKGROUND: To compare results from different corneal astigmatism measurement instruments; to reconstruct corneal astigmatism from the postimplantation spectacle refraction and toric intraocular lens (IOL) power; and to derive models for mapping measured corneal astigmatism to reconstructed corneal astigmatism. METHODS: Retrospective single centre study involving 150 eyes treated with a toric IOL (Alcon SN6AT, DFT or TFNT). Measurements included IOLMaster 700 keratometry (IOLMK) and total keratometry (IOLMTK), Pentacam keratometry (PK) and total corneal refractive power in 3 and 4 mm zones (PTCRP3 and PTCRP4), and Aladdin keratometry (AK). Regression-based models mapping the measured C0 and C45 components (Alpin's method) to reconstructed corneal astigmatism were derived. RESULTS: Mean C0 components were 0.50/0.59/0.51 dioptres (D) for IOLMK/PK/AK; 0.2/0.26/0.31 D for IOLMTK/PTCRP3/PTCRP4; and 0.26 D for reconstructed corneal astigmatism. All corresponding C45 components ranged around 0. The prediction models had main diagonal elements lower than 1 with some crosstalk between C0 and C45 (nonzero off-diagonal elements). Root-mean-squared residuals were 0.44/0.45/0.48/0.51/0.50/0.47 D for IOLMK/IOLMTK/PK/PTCRP3/PTCRP4/AK. CONCLUSIONS: Results from the different modalities are not consistent. On average IOLMTK/PTCRP3/PTCRP4 match reconstructed corneal astigmatism, whereas IOLMK/PK/AK show systematic C0 offsets of around 0.25 D. IOLMTK/PTCRP3/PTCRP4. Prediction models can reduce but not fully eliminate residual astigmatism after toric IOL implantation.
Asunto(s)
Astigmatismo , Biometría , Córnea , Topografía de la Córnea , Implantación de Lentes Intraoculares , Refracción Ocular , Humanos , Astigmatismo/fisiopatología , Astigmatismo/diagnóstico , Astigmatismo/cirugía , Estudios Retrospectivos , Masculino , Biometría/métodos , Refracción Ocular/fisiología , Femenino , Córnea/diagnóstico por imagen , Córnea/patología , Anciano , Persona de Mediana Edad , Topografía de la Córnea/métodos , Lentes Intraoculares , Segmento Anterior del Ojo/diagnóstico por imagen , Agudeza Visual/fisiología , Anciano de 80 o más Años , Facoemulsificación , AdultoRESUMEN
PURPOSE: Congenital aniridia is a severe malformation of almost all eye segments. In addition, endocrinological, metabolic, and central nervous systems diseases may be present. In order to develop better treatment options for this rare disease, an aniridia center must be established. The purpose of this work is to summarize ophthalmic findings of aniridia subjects examined at the Department of Ophthalmology, Saarland University Medical Center in Homburg. METHODS: Our retrospective single-center study included patients who underwent a comprehensive ophthalmic examination through the head of the KiOLoN ("Kinderophthalmologie", Orthoptics, Low Vision and Neuroophthalmology) Unit of the department between June 2003 and January 2022. Data at the first examination time point have been included. RESULTS: Of 286 subjects, 556 eyes of (20.1 ± 20.1 years; 45.5% males) were included. There was nystagmus in 518 (93.7%) eyes, and strabismus in 327 (58.8%) eyes. There were 436 (78.4%) eyes with age-appropriate axial length, 104 (18.7%) eyes with microphthalmos, and 13 (2.3%) eyes with buphthalmos. There was iris malformation with atypical coloboma in 34 eyes (6.1%), more than 6 clock hours of iris remnants in 61 eyes (10.9%), less than 6 clock hours of iris remnants in 96 eyes (17.2%), and complete aniridia in 320 (57.5%) eyes. The patients were graded according to the following aniridia-associated keratopathy (AAK) stages: Stage 0 (96 eyes [17.2%], no keratopathy), Stage 1 (178 eyes [32.0%]), Stage 2 (107 eyes [19.2%]), Stage 3 (67 eyes [12.0%]), Stage 4 (62 eyes [11.1%]), Stage 5 (45 eyes [8.0%]). There was secondary glaucoma in 307 (55.5%), macular hypoplasia in 395 (71.4%), and congenital optic nerve head pathology in 223 (40.3%) eyes. The iris malformation type was significantly positively correlated with AAK stage, lens properties, presence of glaucoma, congenital macular, and optic nerve head properties (p < 0.001 for all), while complete aniridia showed the most complications. CONCLUSIONS: At the Homburg Aniridia Center, the most common ophthalmic signs in congenital aniridia were AAK, iris malformation, cataract, and macular hypoplasia. The iris malformation type may indicate future expression of AAK, cataract, and glaucoma development and it is correlated with a congenital optic nerve head and macular pathology. Our registry will support further detailed longitudinal analysis of ophthalmic and systemic diseases of aniridia subjects during long-term follow-up.
Asunto(s)
Aniridia , Catarata , Enfermedades de la Córnea , Glaucoma , Masculino , Humanos , Anciano de 80 o más Años , Femenino , Estudios Transversales , Estudios Retrospectivos , Aniridia/diagnóstico , Aniridia/epidemiología , Catarata/complicaciones , Glaucoma/complicaciones , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/epidemiología , Trastornos de la Visión/etiologíaRESUMEN
PURPOSE: To compare biometric measures from 2 modern swept-source OCT biometers (IOLMaster700 (Z, Carl-Zeiss-Meditec) and Anterion (H, Heidelberg Engineering)) and evaluate the effect of measurement differences on the resulting lens power (IOLP). METHODS: Biometric measurements were made on a large study population with both instruments. We compared axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT) and corneal front and back surface curvature measurements. Corneal curvature was converted to power vectors and total power derived using the Gullstrand formula. A paraxial lens power calculation formula and a prediction for the IOL axial position according to the Castrop formula were used to estimate differences in IOLP targeting for emmetropia. RESULTS: There were no systematic differences between measurements of AL (- 0.0146 ± 0.0286 mm) and LT (0.0383 ± 0.0595 mm), whereas CCT yielded lower (7.8 ± 6.6 µm) and ACD higher (0.1200 ± 0.0531 mm) values with H. With H, CCT was lower for thicker corneas. The mean corneal front surface radius did not differ (- 0.4 ± 41.6 µm), but the corneal back surface yielded a steeper radius (- 397.0 ± 74.6 µm) with H, giving lower mean total power (- 0.3469 ± 0.2689 dpt). The astigmatic vector components in 0°/90° and 45°/135° were the same between both instruments for the front/back surface or total power. CONCLUSION: The biometric measures used in standard formulae (AL, corneal front surface curvature/power) are consistent between instruments. However, modern formulae involving ACD, CCT or corneal back surface curvature may yield differences in IOLP, and therefore, formula constant optimisation customised to the biometer type is required.
Asunto(s)
Cristalino , Lentes Intraoculares , Humanos , Longitud Axial del Ojo/anatomía & histología , Tomografía de Coherencia Óptica/métodos , Córnea , Biometría/métodos , Reproducibilidad de los Resultados , Cámara AnteriorRESUMEN
PURPOSE: To investigate the effect of Rose Bengal photodynamic therapy (RB-PDT) on viability and proliferation of human limbal epithelial stem cells (T-LSCs), human corneal epithelial cells (HCE-T), human limbal fibroblasts (LFCs), and human normal and keratoconus fibroblasts (HCFs and KC-HCFs) in vitro. METHODS: T-LSCs and HCE-T cell lines were used in this research. LFCs were isolated from healthy donor corneal limbi (n = 5), HCFs from healthy human donor corneas (n = 5), and KC-HCFs from penetrating keratoplasties of keratoconus patients (n = 5). After cell culture, RB-PDT was performed using 0.001% RB concentration and 565 nm wavelength illumination with 0.14 to 0.7 J/cm2 fluence. The XTT and the BrdU assays were used to assess cell viability and proliferation 24 h after RB-PDT. RESULTS: RB or illumination alone did not change cell viability or proliferation in any of the cell types (p ≥ 0.1). However, following RB-PDT, viability decreased significantly from 0.17 J/cm2 fluence in HCFs (p < 0.001) and KC-HCFs (p < 0.0001), and from 0.35 J/cm2 fluence in T-LSCs (p < 0.001), HCE-T (p < 0.05), and LFCs ((p < 0.0001). Cell proliferation decreased significantly from 0.14 J/cm2 fluence in T-LSCs (p < 0.0001), HCE-T (p < 0.05), and KC-HCFs (p < 0.001) and from 0.17 J/cm2 fluence in HCFs (p < 0.05). Regarding LFCs proliferation, no values could be determined by the BrdU assay. CONCLUSIONS: Though RB-PDT seems to be a safe and effective treatment method in vivo, its dose-dependent phototoxicity on corneal epithelial and stromal cells has to be respected. The data and experimental parameters applied in this study may provide a reliable reference for future investigations.
RESUMEN
BACKGROUND: Congenital aniridia is a severe malformation of almost all eye segments. Aniridia-associated keratopathy (AAK) and secondary glaucoma, which occur in more than 50% of affected individuals, are typically progressive and pose a high risk of blindness for patients with congenital aniridia. Our aim was to investigate the effect of glaucoma treatment on AAK in patients of the Homburg Aniridia Center. METHODS: Our retrospective monocentric study included patients who underwent a comprehensive ophthalmological examination at the Homburg Aniridia Center between June 2003 and January 2022. RESULTS: There were 556 eyes of 286 subjects (20.1 ± 20.1 years; 45.5% males) included. In 307 (55.2%) eyes of 163 subjects (27.5 ± 16.3 years; 43.1% males), glaucoma was present at the time of examination. The mean intraocular pressure in the glaucoma group was 19.0 mmHg (± 8.0), while in the non-glaucoma group, it was 14.1 mmHg (± 3.6) (p < 0.001). In the glaucoma group, 68 patients used antiglaucomatous topical monotherapy, 51 patients used 2 agents, 41 patients used 3 agents, 7 patients used quadruple therapy, and 140 did not use topical therapy (e.g., after pressure-lowering surgery, pain-free end-stage glaucoma, or incompliance). Patients were classified according to the following stages of AAK: Stage 0 (96 eyes [17.2%], no keratopathy), Stage 1 (178 eyes [32.0%]), Stage 2 (107 eyes [19.2%]), Stage 3 (67 eyes [12.0%]), Stage 4 (62 eyes [11.1%]), Stage 5 (45 eyes [8.0%]). The mean stage of AAK was 1.4 (1.2â-â1.5) in the group without eye drops, 1.9 (1.5â-â2.2) in the group with monotherapy, 1.8 (1.5â-â2.1) in the group with 2 drugs, 1.9 (1.5â-â2.2) in the group with 3 drugs, 3.4 (2.3â-â4.6) in the group with 4 drugs, and 3.3 (3.1â-â3.6) after antiglaucomatous surgery. The stage of AAK was significantly positively correlated with the number of pressure-lowering eye drops (p < 0.05) and prior pressure-lowering surgery (p < 0.05). Prostaglandin analogues were not correlated with a higher AAK stage compared to the other drug groups. CONCLUSIONS: At the Homburg Aniridia Center, patients using topical antiglaucomatous quadruple therapy or who had previously undergone antiglaucomatous surgery had by far the highest AAK stage. The different drug groups had no influence on the AAK stage.
RESUMEN
BACKGROUND: To elucidate the influence of overnight wear of orthokeratology (OOK) lenses on the thickness of the tear lipid layer (LLT). METHODS: We conducted a retrospective cross-sectional study of children who visited The First Affiliated Hospital of USTC between July and September 2021. LLT and blinking dynamics were assessed. Diopters and corneal topography were also recorded. RESULTS: The number of children enrolled in this program was 402 (804 eyes). One hundred and seventy-one children (342 eyes, 79 males and 92 females) aged 4â-â17 years (10.59 ± 2.54 years) who never wore OOK were included in the control group, while 231 children (462 eyes, 121 males and 110 females) aged 7â-â18 years (11.09 ± 2.24 years) who wore OOK for more than 1 week were included in the observation group. Compared to the control group with an LLT of 58.5 ± 18.19 nm, the OOK group exhibited a significant decrease in the LLT value to 54.42 ± 17.60 nm. In addition, the LLT in females was significantly thicker than that in males in both the control (male 54.78 ± 16.56 nm, female 61.70 ± 18.95 nm) and observation groups (male 51.88 ± 16.68 nm, female 57.21 ± 18.18 nm). It is worth noting that the influence of wearing OOK on the LLT value was only detected up to 18 months. Eighteen months later, there was almost no difference in LLT between the control and observation groups. We also noted that there was no change in LLT correlated to the surface regularity index/surface asymmetry index. CONCLUSION: Wearing OOK can affect tear film LLT within the first 18 months after wear. More attention should be given to children wearing OOK for less than 18 months, especially males.
RESUMEN
PURPOSE: To assess various potential factors on human limbal epithelial cell (LEC) outgrowth in vitro using corneal donor tissue following long-term storage (organ culture) and a stepwise linear regression algorithm. METHODS: Of 215 donors, 304 corneoscleral rings were used for our experiments. For digestion of the limbal tissue and isolation of the limbal epithelial cells, the tissue pieces were incubated with 4.0 mg/mL collagenase A at 37â°C with 95% relative humidity and a 5% CO2 atmosphere overnight. Thereafter, limbal epithelial cells were separated from limbal keratocytes using a 20-µm CellTricks filter. The separated human LECs were cultured in keratinocyte serum-free medium medium, 1% penicillin/streptomycin (P/S), 0.02% epidermal growth factor (EGF), and 0.3% bovine pituitary extract (BPE). The potential effect of donor age (covariate), postmortem time (covariate), medium time (covariate), size of the used corneoscleral ring (360°, 270°180°, 120°, 90°, less than 90°) (covariate), endothelial cell density (ECD) (covariate), gender (factor), number of culture medium changes during organ culture (factor), and origin of the donor (donating institution and storing institution, factor) on the limbal epithelial cell outgrowth was analyzed with a stepwise linear regression algorithm. RESULTS: The rate of successful human LEC outgrowth was 37.5%. From the stepwise linear regression algorithm, we found out that the relevant influencing parameters on the LEC growth were intercept (p < 0.001), donor age (p = 0.002), number of culture medium changes during organ culture (p < 0.001), total medium time (p = 0.181), and size of the used corneoscleral ring (p = 0.007), as well as medium timeâ×âsize of the corneoscleral ring (p = 0.007). CONCLUSIONS: The success of LEC outgrowth increases with lower donor age, lower number of organ culture medium changes during storage, shorter medium time in organ culture, and smaller corneoscleral ring size. Our stepwise linear regression algorithm may help us in optimizing LEC cultures in vitro.
RESUMEN
PAX6 haploinsufficiency related aniridia is characterized by disorder of limbal epithelial cells (LECs) and aniridia related keratopathy. In the limbal epithelial cells of aniridia patients, deregulated retinoic acid (RA) signaling components were identified. We aimed to visualize differentiation marker and RA signaling component expression in LECs, combining a differentiation triggering growth condition with a small interfering RNA (siRNA) based aniridia cell model (PAX6 knock down). Primary LECs were isolated from corneoscleral rims of healthy donors and cultured in serum free low Ca2+ medium (KSFM) and in KSFM supplemented with 0.9 mmol/L Ca2+. In addition, LECs were treated with siRNA against PAX6. DSG1, PAX6, KRT12, KRT 3, ADH7, RDH10, ALDH1A1, ALDH3A1, STRA6, CYP1B1, RBP1, CRABP2, FABP5, PPARG, VEGFA and ELOVL7 expression was determined using qPCR and western blot. DSG1, FABP5, ADH7, ALDH1A1, RBP1, CRABP2 and PAX6 mRNA and FABP5 protein expression increased (p ≤ 0.03), PPARG, CYP1B1 mRNA expression decreased (p ≤ 0.0003) and DSG1 protein expression was only visible after Ca2+ supplementation. After PAX6 knock down and Ca2+ supplementation, ADH7 and ALDH1A1 mRNA and DSG1 and FABP5 protein expression decreased (p ≤ 0.04), compared to Ca2+ supplementation alone. Using our cell model, with Ca2+ supplementation and PAX6 knockdown with siRNA treatment against PAX6, we provide evidence that haploinsufficiency of the master regulatory gene PAX6 contributes to differentiation defect in the corneal epithelium through alterations of RA signalling. Upon PAX6 knockdown, DSG1 differentiation marker and FABP5 RA signaling component mRNA expression decreases. A similar effect becomes apparent at protein level though differentiation triggering Ca2+ supplementation in the siRNA-based aniridia cell model. Expression data from this cell model and from our siRNA aniridia cell model strongly indicate that FABP5 expression is PAX6 dependent. These new findings may lead to a better understanding of differentiation processes in LECs and are able to explain the insufficient cell function in AAK.
Asunto(s)
Aniridia , Desmogleína 1 , Proteínas de Unión a Ácidos Grasos , Factor de Transcripción PAX6 , Aniridia/genética , Antígenos de Diferenciación , Desmogleína 1/biosíntesis , Desmogleína 1/genética , Células Epiteliales/metabolismo , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tretinoina/metabolismoRESUMEN
Thymic stromal lymphopoietin (TSLP) is associated with fungal keratitis. This work aims to investigate whether TSLP can regulate T helper (Th) 17 and regulatory T cell (Treg) differentiation. We separated dendritic cells (DCs) from peripheral blood of healthy volunteers. DCs were treated with TSLP to activate DCs, and exosomes were obtained. CD+ T cells were incubated with exosomes from TSLP-treated DCs. We found that exosomes from TSLP-treated DCs notably promoted the proportions of Th17 cells and inhibited the proportions of Tregs in the CD4+ T cells. Moreover, exosomes from TSLP-treated DCs enhanced the expression of retinoid-related orphan receptor γt (RORγt) and interleukin 17 (IL-17), and repressed the expression of forkhead box protein P3 (Foxp3) and interleukin 10 (IL-10) in the CD4+ T cells. Furthermore, miR-21 was highly expressed in exosomes from TSLP-treated DCs. Exosomes from TSLP-treated miR-21-silenced DCs promoted Treg differentiation and suppressed Th17 differentiation. Smad7 up-regulation repressed Th17 differentiation and enhanced Treg differentiation, which was abolished by miR-21 overexpression. Smad7 overexpression rescued the effect of exosomes from TSLP-treated DCs on Th17/Treg differentiation. In conclusion, our article confirms that TSLP induces DCs to deliver miR-21 by secreting exosomes, and thus miR-21 regulates Th17/Treg differentiation by inhibiting Smad7. Thus, this work further reveals the biological role of miR-21 in fungal keratitis.
Asunto(s)
Citocinas/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Proteína smad7/metabolismo , Linfocitos T Reguladores/metabolismo , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Voluntarios Sanos , Humanos , MicroARNs/genética , Proteína smad7/genética , Células Th17/metabolismo , Linfopoyetina del Estroma TímicoRESUMEN
BACKGROUND: Overall ocular magnification (OOM) and meridional ocular magnification (MOM) with consequent image distortions have been widely ignored in modern cataract surgery. The purpose of this study was to investigate OOM and MOM in a general situation with an astigmatic refracting surface. METHODS: From a large dataset containing biometric measurements (IOLMaster 700) of both eyes of 9734 patients prior to cataract surgery, the equivalent (PIOLeq) and cylindric power (PIOLcyl) were derived for the HofferQ, Haigis, and Castrop formulae for emmetropia. Based on the pseudophakic eye model, OOM and MOM were extracted using 4 × 4 matrix algebra for the corrected eye (with PIOLeq/PIOLcyl (scenario 1) or with PIOLeq and spectacle correction of the residual refractive cylinder (scenario 2) or with PIOLeq remaining the residual uncorrected refractive cylinder (blurry image) (scenario 3)). In each case, the relative image distortion of MOM/OOM was calculated in %. RESULTS: On average, PIOLeq/PIOLcyl was 20.73 ± 4.50 dpt/1.39 ± 1.09 dpt for HofferQ, 20.75 ± 4.23 dpt/1.29 ± 1.01 dpt for Haigis, and 20.63 ± 4.31 dpt/1.26 ± 0.98 dpt for Castrop formulae. Cylindric refraction for scenario 2 was 0.91 ± 0.70 dpt, 0.89 ± 0.69 dpt, and 0.89 ± 0.69 dpt, respectively. OOM/MOM (× 1000) was 16.56 ± 1.20/0.08 ± 0.07, 16.56 ± 1.20/0.18 ± 0.14, and 16.56 ± 1.20/0.08 ± 0.07 mm/mrad with HofferQ; 16.64 ± 1.16/0.07 ± 0.06, 16.64 ± 1.16/0.18 ± 0.14, and 16.64 ± 1.16/0.07 ± 0.06 mm/mrad with Haigis; and 16.72 ± 1.18/0.07 ± 0.05, 16.72 ± 1.18/0.18 ± 0.14, and 16.72 ± 1.18/0.07 ± 0.05 mm/mrad with Castrop formulae. Mean/95% quantile relative image distortion was 0.49/1.23%, 0.41/1.05%, and 0.40/0.98% for scenarios 1 and 3 and 1.09/2.71%, 1.07/2.66%, and 1.06/2.64% for scenario 2 with HofferQ, Haigis, and Castrop formulae. CONCLUSION: Matrix representation of the pseudophakic eye allows for a simple and straightforward prediction of OOM and MOM of the pseudophakic eye after cataract surgery. OOM and MOM could be used for estimating monocular image distortions, or differences in overall or meridional magnifications between eyes.
Asunto(s)
Catarata , Cristalino , Lentes Intraoculares , Facoemulsificación , Humanos , Refracción Ocular , Biometría/métodos , Estudios RetrospectivosRESUMEN
BACKGROUND: The corneal back surface is known to add some against the rule astigmatism, with implications in cataract surgery with toric lens implantation. This study aimed to set up and validate a deep learning algorithm to predict corneal back surface power from the corneal front surface power and biometric measures. METHODS: This study was based on a large dataset of IOLMaster 700 measurements from two clinical centres. N = 19,553 measurements of 19,553 eyes with valid corneal front (CFSPM) and back surface power (CBSPM) data and other biometric measures. After a vector decomposition of CFSPM and CBSPM into equivalent power and projections of astigmatism to the 0°/90° and 45°/135° axes, a multi-output feedforward neural network was derived to predict vector components of CBSPM from CFSPM and other measurements. The predictions were compared with a multivariate linear regression model based on CFSPM components only. RESULTS: After pre-conditioning, a network with two hidden layers each having 12 neurons was derived. The dataset was split into training (70%), validation (15%) and test (15%) subsets. The prediction error (predicted corneal back surface power CBSPP - CBSPM) of the network after training and crossvalidation showed no systematic offset, narrower distributions for CBSPP - CBSPM and no trend error of CBSPP - CBSPM vs. CBSPM for any of the vector components. The multivariate linear model also showed no systematic offset, but broader distributions of the prediction error components and a systematic trend of all vector components vs. CFSPM components. CONCLUSION: The neural network approach based on CFSPM vector components and other biometric measures outperforms the multivariate linear model in predicting corneal back surface power vector components. Modern biometers can supply all parameters required for this algorithm, enabling reliable predictions for corneal back surface data where direct corneal back surface data are unavailable.