Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioessays ; : e2400066, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837436

RESUMEN

The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.

2.
Mol Cell ; 67(5): 867-881.e7, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28757209

RESUMEN

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.


Asunto(s)
Proteína BRCA2/metabolismo , Replicación del ADN , ADN/biosíntesis , Recombinasa Rad51/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteína BRCA2/genética , Sitios de Unión , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Femenino , Inestabilidad Genómica , Humanos , Proteína Homóloga de MRE11 , Masculino , Mutación , Unión Proteica , Recombinasa Rad51/genética , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Proteínas de Xenopus/genética , Xenopus laevis/genética
3.
Nature ; 557(7703): 57-61, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29670289

RESUMEN

SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.


Asunto(s)
Replicación del ADN , Interferón Tipo I/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Citosol/metabolismo , ADN de Cadena Simple/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/prevención & control , Interferón Tipo I/inmunología , Proteína Homóloga de MRE11/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , RecQ Helicasas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/deficiencia
4.
Nat Rev Genet ; 18(9): 535-550, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714480

RESUMEN

The interplay between replication stress and the S phase checkpoint is a key determinant of genome maintenance, and has a major impact on human diseases, notably, tumour initiation and progression. Recent studies have yielded insights into sequence-dependent and sequence-independent sources of endogenous replication stress. These stresses result in nuclease-induced DNA damage, checkpoint activation and genome-wide replication fork slowing. Several hypotheses have been proposed to account for the mechanisms involved in this complex response. Recent results have shown that the slowing of the replication forks most commonly results from DNA precursor starvation. By concomitantly increasing the density of replication initiation, the cell elicits an efficient compensatory strategy to avoid mitotic anomalies and the inheritance of damage over cell generations.


Asunto(s)
Daño del ADN , Replicación del ADN , Animales , Ciclo Celular , Células/metabolismo , Desoxirribonucleótidos/metabolismo , Humanos , Conformación de Ácido Nucleico , Transcripción Genética
5.
PLoS Genet ; 12(5): e1006007, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27135742

RESUMEN

Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.


Asunto(s)
Replicación del ADN/genética , Recombinación Homóloga/genética , Mitosis/genética , Estrés Oxidativo/genética , Acetilcisteína/farmacología , Animales , Células CHO , Centrosoma/efectos de los fármacos , Cricetulus , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes/genética , Histonas/genética , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Imagen Individual de Molécula , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
6.
Proc Natl Acad Sci U S A ; 111(2): 763-8, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24347643

RESUMEN

Homologous recombination deficient (HR(-)) mammalian cells spontaneously display reduced replication fork (RF) movement and mitotic extra centrosomes. We show here that these cells present a complex mitotic phenotype, including prolonged metaphase arrest, anaphase bridges, and multipolar segregations. We then asked whether the replication and the mitotic phenotypes are interdependent. First, we determined low doses of hydroxyurea that did not affect the cell cycle distribution or activate CHK1 phosphorylation but did slow the replication fork movement of wild-type cells to the same level than in HR(-) cells. Remarkably, these low hydroxyurea doses generated the same mitotic defects (and to the same extent) in wild-type cells as observed in unchallenged HR(-) cells. Reciprocally, supplying nucleotide precursors to HR(-) cells suppressed both their replication deceleration and mitotic extra centrosome phenotypes. Therefore, subtle replication stress that escapes to surveillance pathways and, thus, fails to prevent cells from entering mitosis alters metaphase progression and centrosome number, resulting in multipolar mitosis. Importantly, multipolar mitosis results in global unbalanced chromosome segregation involving the whole genome, even fully replicated chromosomes. These data highlight the cross-talk between chromosome replication and segregation, and the importance of HR at the interface of these two processes for protection against general genome instability.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Replicación del ADN/fisiología , Recombinación Homóloga/fisiología , Mitosis/fisiología , Animales , Afidicolina , Línea Celular , Centrosoma/fisiología , Segregación Cromosómica/fisiología , Cricetinae , Cricetulus , Citometría de Flujo , Hidroxiurea/metabolismo , Microscopía por Video , Estadísticas no Paramétricas , Imagen de Lapso de Tiempo
7.
PLoS Genet ; 9(7): e1003643, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874235

RESUMEN

Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.


Asunto(s)
Cromatina/genética , Sitios Frágiles del Cromosoma/genética , Inestabilidad Genómica/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Mitosis/genética , Proteínas Quinasas/genética , Origen de Réplica/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
8.
Nat Commun ; 15(1): 5423, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926338

RESUMEN

Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-ß was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.


Asunto(s)
Senescencia Celular , Daño del ADN , Replicación del ADN , Exodesoxirribonucleasas , Proteína Homóloga de MRE11 , Fosfoproteínas , Transducción de Señal , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Senescencia Celular/genética , Fibroblastos/metabolismo , Interferón beta/metabolismo , Interferón beta/genética
9.
Front Cell Dev Biol ; 9: 702584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249949

RESUMEN

The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.

10.
FEBS Lett ; 591(8): 1083-1100, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28079255

RESUMEN

Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Recombinación Homóloga , Modelos Biológicos , Recombinasa Rad51/metabolismo , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica , Roturas del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Proteína de Replicación A/antagonistas & inhibidores , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo
11.
Cell Rep ; 14(5): 1114-1127, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26804904

RESUMEN

Mammalian cells deficient in ATR or Chk1 display moderate replication fork slowing and increased initiation density, but the underlying mechanisms have remained unclear. We show that exogenous deoxyribonucleosides suppress both replication phenotypes in Chk1-deficient, but not ATR-deficient, cells. Thus, in the absence of exogenous stress, depletion of either protein impacts the replication dynamics through different mechanisms. In addition, Chk1 deficiency, but not ATR deficiency, triggers nuclease-dependent DNA damage. Avoiding damage formation through invalidation of Mus81-Eme2 and Mre11, or preventing damage signaling by turning off the ATM pathway, suppresses the replication phenotypes of Chk1-deficient cells. Damage and resulting DDR activation are therefore the cause, not the consequence, of replication dynamics modulation in these cells. Together, we identify moderate reduction of precursors available for replication as an additional outcome of DDR activation. We propose that resulting fork slowing, and subsequent firing of backup origins, helps replication to proceed along damaged templates.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteínas Quinasas/deficiencia , Origen de Réplica , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Desoxirribonucleósidos/metabolismo , Humanos , Proteína Homóloga de MRE11 , Proteínas Quinasas/metabolismo
12.
J Mol Biol ; 425(23): 4845-55, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23557832

RESUMEN

The factors that govern replication programs are still poorly identified in metazoans, especially in mammalian cells. Thanks to molecular combing, the dynamics of DNA replication can be assessed at the genome-scale level from the cumulative analysis of single DNA fibers. This technique notably enables measurement of replication fork speed and fork asymmetry and that of distances separating either initiation or termination events. The results presented here aim to evaluate requirements critical to accurate measurement of replication parameters by molecular combing. We show that sample size, fiber length and DNA counterstaining are crucial to gain robust information concerning replication dynamics. Our results thus provide a methodological frame to investigate the DNA replication program through molecular combing analyses.


Asunto(s)
Técnicas Citológicas/métodos , Replicación del ADN , Animales , Línea Celular , Humanos , Mamíferos , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA