Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 289(9): 6236-47, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24394412

RESUMEN

The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Antibacterianos/farmacología , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología
2.
G3 (Bethesda) ; 2(1): 1-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22384376

RESUMEN

The multifunctional factors Imp-α and Imp-ß are involved in nuclear protein import, mitotic spindle dynamics, and nuclear membrane formation. Furthermore, each of the three members of the Imp-α family exerts distinct tasks during development. In Drosophila melanogaster, the imp-α2 gene is critical during oogenesis for ring canal assembly; specific mutations, which allow oogenesis to proceed normally, were found to block early embryonic mitosis. Here, we show that imp-α2 and imp-ß genetically interact during early embryonic development, and we characterize the pattern of defects affecting mitosis in embryos laid by heterozygous imp-α2(D14) and imp-ß(KetRE34) females. Embryonic development is arrested in these embryos but is unaffected in combinations between imp-ß(KetRE34) and null mutations in imp-α1 or imp-α3. Furthermore, the imp-α2(D14)/imp-ß(KetRE34) interaction could only be rescued by an imp-α2 transgene, albeit not imp-α1 or imp-α3, showing the exclusive imp-α2 function with imp-ß. Use of transgenes carrying modifications in the major Imp-α2 domains showed the critical requirement of the nuclear localization signal binding (NLSB) site in this process. In the mutant embryos, we found metaphase-arrested mitoses made of enlarged spindles, suggesting an unrestrained activity of factors promoting spindle assembly. In accordance with this, we found that Imp-ß(KetRE34) and Imp-ß(KetD) bind a high level of RanGTP/GDP, and a deletion decreasing RanGTP level suppresses the imp-ß(KetRE34) phenotype. These data suggest that a fine balance among Imp-α2, Imp-ß, RanGTP, and the NLS cargos is critical for mitotic progression during early embryonic development.

3.
J Struct Biol ; 154(1): 27-41, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16458020

RESUMEN

Null-mutation in Drosophila importin-alpha2, such as the deficiency imp-alpha2(D14), causes recessive female sterility with the formation of dumpless eggs. In imp-alpha2(D14) the transfer of nurse cell components to the oocyte is interrupted and the Kelch protein, an oligomeric ring canal actin organizer, is normally produced but fails to associate with the ring canals resulting in their occlusion. To define domains regulating Kelch deposition on ring canals we performed site-directed mutagenesis on protein binding domains and putative phosphorylation sites of Imp-alpha2. Phenotypic analysis of the mutant transgenes in imp-alpha2(D14) revealed that mutations affecting the Imp-beta binding-domain, the dimerization domain, and specific serine residues of putative phosphorylation sites led to a normal or nearly normal oogenesis but arrested early embryonic development, whereas mutations in the nuclear localization signal (NLS) and CAS/exportin binding domains resulted in ring canal occlusion and a drastic nuclear accumulation of the mutant proteins. Deletion of the Imp-beta binding domain also gave rise to a nuclear localization of the mutant protein, which partially retained its function in ring canal assembly. Thus, we propose that mutations in NLS and CAS binding domains affect the deposition of Kelch onto the ring canals and prevent the association of Imp-alpha2 with a negative regulator of Kelch function.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Drosophila/ultraestructura , Oogénesis , Ovario/ultraestructura , alfa Carioferinas/química , Actinas/metabolismo , Animales , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Cáscara de Huevo/citología , Femenino , Polarización de Fluorescencia , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/genética , Mitosis , Mutación , Óvulo/citología , Estructura Terciaria de Proteína , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
4.
Dev Biol ; 251(2): 271-82, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12435357

RESUMEN

The interstitial deletion D14 affecting the importin-alpha 2 gene of Drosophila, or imp-alpha 2(D14), causes recessive female sterility characterized by a block of nurse cell-oocyte transport during oogenesis. In wild-type egg chambers, the Imp-alpha 2 protein is uniformly distributed in the nurse cell cytoplasm with a moderate accumulation along the oocyte cortex. Cytochalasin D treatment of wild-type egg chambers disrupts the in vivo association of Imp-alpha 2 with F-actin and results in its release from the oocyte cortex and its transfer into nurse cell nuclei. Binding assay shows that the interaction of Imp-alpha 2 with F-actin, albeit not monomeric actin, requires the occurrence of NLS peptides. Phenotypic analysis of imp-alpha 2(D14) ovaries reveals that the block of nurse cell-oocyte transport results from the occlusion of the ring canals that constitute cytoplasmic bridges between the nurse cells and the oocyte. Immunohistochemistry shows that, although the Imp-alpha2 protein cannot be detected on the ring canals, the Kelch protein, a known ring canal component, fails to bind to ring canals in imp-alpha 2(D14) egg chambers. Since loss-of-function mutations of kelch results in a similar dumpless phenotype, we propose that the Imp-alpha 2 protein plays a critical role in Kelch function by regulating its deposition on ring canals during their assembly.


Asunto(s)
Proteínas de Drosophila , Drosophila/fisiología , Carioferinas/fisiología , Proteínas de Microfilamentos , Oogénesis/fisiología , Actinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas Portadoras/fisiología , Femenino , Infertilidad , Masculino
5.
J Struct Biol ; 140(1-3): 279-90, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12490175

RESUMEN

Importin-alpha proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-alpha genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-alpha proteins identified in Drosophila, namely, Imp-alpha1, -alpha2, and -alpha3. We found that each Imp-alpha is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-alpha2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-alpha2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-alpha2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-alpha1 and -alpha3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-alpha1 expression extends up to the onset of the elongation phase, whereas that of Imp-alpha3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-alpha1 and -alpha3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-alpha1 and -alpha3 are nuclear. These data indicate that each Imp-alpha protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.


Asunto(s)
Drosophila/metabolismo , Espermatogénesis , Testículo/metabolismo , alfa Carioferinas/biosíntesis , Animales , Diferenciación Celular , División Celular , Núcleo Celular/metabolismo , Clonación Molecular , Femenino , Fertilidad/genética , Inmunohistoquímica , Masculino , Meiosis , Microscopía Confocal , Mitosis , Modelos Moleculares , Mutación , Fenotipo , Espermatocitos/metabolismo , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA