Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 15(7): 519-522, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967495

RESUMEN

We developed a method in which the NS3 cis-protease from hepatitis C virus can be used as a ligand-inducible connection to control the function and localization of engineered proteins in mammalian cells. To demonstrate the versatility of this approach, we designed drug-sensitive transcription factors and transmembrane signaling proteins, the activities of which can be tightly and reversibly controlled through the use of clinically tested antiviral protease inhibitors.


Asunto(s)
Antivirales/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Células CHO , Cricetulus , ADN/genética , ADN/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo
2.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909459

RESUMEN

Chemical control of protein activity is a powerful tool for scientific study, synthetic biology, and cell therapy; however, for broad use, effective chemical inducer systems must minimally crosstalk with endogenous processes and exhibit desirable drug delivery properties. Accordingly, the drug-controllable proteolytic activity of hepatitis C cis- protease NS3 and its associated antiviral drugs have been used to regulate protein activity and gene modulation. These tools advantageously exploit non-eukaryotic/prokaryotic proteins and clinically approved inhibitors. Here we expand the toolkit by utilizing catalytically inactive NS3 protease as a high affinity binder to genetically encoded, antiviral peptides. Through our approach, we create NS3-peptide complexes that can be displaced by FDA-approved drugs to modulate transcription, cell signaling, split-protein complementation. With our developed system, we discover a new mechanism to allosterically regulate Cre recombinase. Allosteric Cre regulation with NS3 ligands enables orthogonal recombination tools in eukaryotic cells and functions in divergent organisms to control prokaryotic recombinase activity.

3.
ACS Chem Biol ; 18(5): 1228-1236, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37140437

RESUMEN

Chemical control of protein activity is a powerful tool for scientific study, synthetic biology, and cell therapy; however, for broad use, effective chemical inducer systems must minimally crosstalk with endogenous processes and exhibit desirable drug delivery properties. Accordingly, the drug-controllable proteolytic activity of hepatitis C cis-protease NS3 and its associated antiviral drugs have been used to regulate protein activity and gene modulation. These tools advantageously exploit non-eukaryotic and non-prokaryotic proteins and clinically approved inhibitors. Here, we expand the toolkit by utilizing catalytically inactive NS3 protease as a high affinity binder to genetically encoded, antiviral peptides. Through our approach, we create NS3-peptide complexes that can be displaced by FDA-approved drugs to modulate transcription, cell signaling, and split-protein complementation. With our developed system, we invented a new mechanism to allosterically regulate Cre recombinase. Allosteric Cre regulation with NS3 ligands enables orthogonal recombination tools in eukaryotic cells and functions in divergent organisms to control prokaryotic recombinase activity.


Asunto(s)
Antivirales , Proteasas Virales , Antivirales/farmacología , Antivirales/química , Hepacivirus , Péptido Hidrolasas , Péptidos/farmacología , Péptidos/química , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA