Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Sci Technol ; 56(10): 6445-6454, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35486530

RESUMEN

The conductor-like screening model for realistic solvents was used to identify ionic liquids (ILs) to efficiently extract perfluorooctanoic acid (PFOA). The infinite dilution chemical potentials of PFOA in 14 000 ILs were calculated and used as descriptors of the chemical affinities between the ILs and PFOA. Trihexyltetradecylphosphonium pivalate ([P6,6,6,14][Piv]) was found to be a good IL for extracting PFOA because it gave a well-balanced combination of a strong chemical attraction for PFOA and useful physicochemical properties. The results of experiments indicated that [P6,6,6,14][Piv] could remove >99.9% of the PFOA in an aqueous solution. However, problematic emulsification of IL in the aqueous phase occurred at PFOA/IL molar ratios <1.9-2.1, and this limited the PFOA removal rate to 80-91%. The ability of the used IL to extract PFOA was found to be partially regenerated by washing the IL with 1% NaOH, and the IL could be reused to extract PFOA with a removal rate decreased by ∼10% in each cycle.


Asunto(s)
Líquidos Iónicos , Caprilatos , Fluorocarburos , Líquidos Iónicos/química , Solventes/química , Agua
2.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897669

RESUMEN

This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.


Asunto(s)
Cartílago , Andamios del Tejido , Cartílago/metabolismo , Células Cultivadas , Humanos , Nanogeles , Análisis Espectral , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Mol Pharm ; 17(10): 3845-3856, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32902989

RESUMEN

Ionic liquids (ILs) attract significant attention as novel solvents for drug delivery systems because of their ability to solubilize poorly soluble drugs and tune the physiological properties of active pharmaceutical ingredients. For the next generation of IL-based drug delivery systems, biocompatibility is a high priority. In the current study, choline-fatty acids ([Cho][FA]) were used as a biocompatible IL to mediate the dissolution of a water-soluble antigen peptide in an oil-based skin penetration enhancer. Among the candidate fatty acids (C8, C10, C12, C14, C16, C18:0, and C18:1), C18:1 was selected because of its low cytotoxicity and mediation of skin permeability for an antigen peptide. Using IL[Cho][C18:1] and an oil-based penetration enhancer, the flux of transdermal delivery of the peptide increased 28-fold compared with delivery using an aqueous vehicle. Furthermore, the IL-mediated transcutaneous vaccination succeeded in suppressing tumor growth in vivo compared to injection. The skin irritation produced by this formulation was tested using an in vitro 3D constructed skin tissue model and an in vivo histological study, which concluded that the formulation did not cause skin irritation. The results suggest that biocompatible IL-mediated dissolution in an oil-based skin penetration enhancer is a promising strategy for transdermal drug delivery.


Asunto(s)
Antígenos de Neoplasias/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Portadores de Fármacos/química , Líquidos Iónicos/química , Neoplasias/prevención & control , Administración Cutánea , Animales , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/farmacocinética , Línea Celular Tumoral/trasplante , Colina/química , Modelos Animales de Enfermedad , Ácidos Grasos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Neoplasias/inmunología , Permeabilidad , Piel , Absorción Cutánea , Solventes/química , Vacunación/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/química , Vacunas de Subunidad/farmacocinética
4.
Mol Pharm ; 17(2): 645-655, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31833775

RESUMEN

Skin dendritic cells (DCs) such as Langerhans cells and dermal dendritic cells have a pivotal role in inducing antigen-specific immunity; therefore, transcutaneous cancer vaccines are a promising strategy to prophylactically prevent the onset of a variety of diseases, including cancers. The largest obstacle to delivering antigen to these skin DC subsets is the barrier function of the stratum corneum. Although reverse micellar carriers are commonly used to enhance skin permeability to hydrophilic drugs, the transcutaneous delivery of antigen, proteins, or peptides has not been achieved to date because of the large molecular weight of drugs. To achieve effective antigen delivery to skin DCs, we developed a novel strategy using a surfactant as a skin permeation enhancer in a reverse micellar carrier. In this study, glyceryl monooleate (MO) was chosen as a skin permeation enhancer, and the MO-based reverse micellar carrier enabled the successful delivery of antigen to Langerhans cells and dermal dendritic cells. Moreover, transcutaneous vaccination with the MO-based reverse micellar carrier significantly inhibited tumor growth, indicating that it is a promising vaccine platform against tumors.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Portadores de Fármacos/administración & dosificación , Antígenos Específicos del Melanoma/administración & dosificación , Melanoma/prevención & control , Micelas , Neoplasias Cutáneas/prevención & control , Vacunación , Administración Cutánea , Animales , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Glicéridos/administración & dosificación , Humanos , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Piel/efectos de los fármacos , Neoplasias Cutáneas/patología , Carga Tumoral/efectos de los fármacos
5.
Mol Pharm ; 15(3): 955-961, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29397746

RESUMEN

Cancer vaccines represent a prophylactic or therapeutic method of suppressing cancer by activating the adaptive immune system. The immune response is initiated by the delivery of tumor antigens to antigen presenting cells (APCs). The use of peptides as vaccine antigens is advantageous, especially in the availability and productivity of pure and defined antigens. However, their limited immunogenicity remains a major drawback, and therefore, the utilization of nanocarriers as a means of delivering antigens to target cells and/or the addition of immune stimulants have been investigated as an efficient peptide-based cancer vaccine. We have developed a solid-in-oil (S/O) nanodispersion as a transcutaneous nanocarrier for hydrophilic molecules. This system has attractive features as a peptide nanocarrier for cancer vaccines, including transcutaneous targeting of professional APCs in the skin, high encapsulation efficacy of hydrophilic molecules, and capacity for coloading with a variety of immune stimulants such as adjuvants. We therefore sought to utilize the developed S/O nanodispersion for the delivery of the tyrosine-related protein 2 peptide, TRP-2180-188, as a peptide antigen against melanoma. Transcutaneous vaccination of the S/O nanodispersion coloaded with adjuvant R-848 was associated with a significant inhibition of melanoma growth and suppression of lung metastasis in tumor-bearing mice. Our findings indicate the potential of S/O nanodispersions as an endogenous peptide carrier for cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Portadores de Fármacos/química , Melanoma Experimental/terapia , Proteínas de la Membrana/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Neoplasias Cutáneas/terapia , Adyuvantes Inmunológicos/administración & dosificación , Administración Cutánea , Animales , Antígenos de Neoplasias/administración & dosificación , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/trasplante , Composición de Medicamentos/métodos , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/administración & dosificación , Inmunogenicidad Vacunal , Melanoma Experimental/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Aceites/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Neoplasias Cutáneas/inmunología , Resultado del Tratamiento
6.
Mol Pharm ; 15(6): 2484-2488, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29762034

RESUMEN

Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Sistemas de Liberación de Medicamentos/métodos , Hipersensibilidad a las Drogas/prevención & control , Líquidos Iónicos/efectos adversos , Paclitaxel/efectos adversos , Antineoplásicos Fitogénicos/química , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/efectos adversos , Hipersensibilidad a las Drogas/etiología , Excipientes/efectos adversos , Excipientes/química , Glicerol/efectos adversos , Glicerol/análogos & derivados , Glicerol/química , Células HeLa , Humanos , Líquidos Iónicos/química , Neoplasias/tratamiento farmacológico , Paclitaxel/química , Solubilidad
7.
Biochem Biophys Res Commun ; 491(3): 701-707, 2017 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-28751214

RESUMEN

Studies involving the functional analysis of exosomal contents including proteins, DNA, and RNA have been reported. Most membrane proteins and lipids are glycosylated, which controls their physical properties and functions, but little is known about glycans on exosomes owing to the difficulty of analysing them. To shed light on these issues, we collected exosomes from mesenchymal stem cells (MSCs) derived from human adipose tissue for glycan profiling using evanescent-field fluorescence-assisted lectin array as well as analysis of their uptake in vivo. Initial analyses showed that the mean diameter of the collected exosomes was 178 nm and they presented with typical exosomal and MSC markers. Regarding the glycan profiling, exosomes interacted more strongly than the membrane of the original MSCs did with a range of lectins, especially sialic acid-binding lectins. The findings also showed that cellular exosome uptake involved recognition by HeLa cell-surface-bound sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs). Confirming this siglec-related uptake, in vivo experiments involving subcutaneous injection of the fluorescently labelled exosomes into mice showed their transport into lymph nodes and internalization by antigen-presenting cells, particularly those expressing CD11b. Closer analysis revealed the colocalization of the exosomes with siglecs, indicating their involvement in the uptake. These findings provide us with an improved understanding of the importance of exosomal transport and targeting in relation to glycans on exosomal surfaces, potentially enabling us to standardize exosomes when using them for therapeutic purposes.


Asunto(s)
Exosomas/metabolismo , Lectinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Células HeLa , Humanos
8.
Langmuir ; 32(47): 12283-12289, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27662236

RESUMEN

Hydroxypropyl cellulose (HPC) is a fascinating polysaccharide to use in developing a nanogel to be a thermoresponsive building unit for nanogel tectonic materials. Cholesterol-bearing HPC (Ch-HPC) self-assembled to form nanogels through hydrophobic interactions of the cholesteryl groups in water. Ch-HPC nanogels had a lower critical solution temperature in line with that of native HPC. The particle size of Ch-HPC nanogels was reversibly controlled by the temperature and salting-out effect. The thermoresponsive property was also observed in Ch-HPC nanogel-cross-linked macrogels. These results suggest that a Ch-HPC nanogel is an attractive building block for thermoresponsive nanogel tectonic materials.

9.
Gels ; 10(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534624

RESUMEN

Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.

10.
Biomaterials ; 282: 121385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093824

RESUMEN

The biomaterial-based immunoengineering has become one of the most attractive research fields in the last decade. In the present study, a solid-in-oil-in-water (S/O/W) emulsion encapsulating antigen in the oil phase of an oil-in-water (O/W) emulsion was prepared as a novel vaccine carrier consisting of similar materials to the emulsion adjuvant of which the safety, immunogenicity and vaccination efficacy have been already confirmed in human. Direct observation by high-resolution confocal laser scanning microscopy and small angle X-ray scattering analysis showed that the antigens were dispersed inside of the oil phase of the S/O/W emulsion as solid-state particles. The S/O/W emulsion robustly produced antigen-specific antibodies and enhanced the antitumor effects in a therapeutic cancer vaccination compared with free antigens or the O/W emulsion in vivo. This result is in good agreement with the activation effect of antigen-specific cytotoxic T lymphocytes and antigen presentation by the S/O/W emulsion, indicating that the S/O/W emulsion consisting of already approved materials is a promising vaccine carrier to produce both humoral and cellular immunity.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra el Cáncer , Antígenos , Emulsiones , Humanos , Vacunación , Agua
11.
Membranes (Basel) ; 10(9)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961729

RESUMEN

Lactic acid that is prepared by fermentation is a compound in food, cosmetic pharmaceutical, and chemical industries. Since a simple technique is desired that separates lactic acid from the cultures, we propose lactic acid permeation through a poly(vinyl chloride)(PVC)-based membrane that contains deep eutectic solvents (DESs) as a carrier. Lactic acid was successfully permeated through polymer inclusion membranes (PIMs) containing hydrophilic DESs, urea-choline chloride and glucose-choline chloride. The permeation behavior was explained by the facilitated transport mechanism based on the solution-diffusion model. Simple preparation of thinner membranes in the PIM process and higher permeation rates are advantages over the supported liquid membrane process. The PVC-based membrane process containing environmentally benign hydrophilic DESs is promising for lactic acid separation on an industrial scale.

12.
Pharmaceutics ; 12(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120968

RESUMEN

An allergy to cow's milk proteins is the most common food allergy in infants and toddlers. Conventional oral immunotherapy for cow's milk allergies requires hospital admission due to the risk of severe allergic reactions, including anaphylaxis. Therefore, a simpler and safer immunotherapeutic method is desirable. We examined transcutaneous immunotherapy with a solid-in-oil (S/O) system. In the S/O system, nano-sized particles of proteins are dispersed in an oil-vehicle with the assistance of nonionic surfactants. In the present study, the S/O system enhanced the skin permeation of the allergen molecule ß-lactoglobulin (BLG), as compared with a control PBS solution. The patches containing BLG in the S/O nanodispersion skewed the immune response in the allergy model mice toward T helper type 1 immunity, indicating the amelioration of allergic symptoms. This effect was more pronounced when the immunomodulator resiquimod (R-848) was included in the S/O system.

13.
Pharmaceutics ; 12(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156090

RESUMEN

Japanese cedar pollinosis (JCP) is a common affliction caused by an allergic reaction to cedar pollen and is considered a disease of national importance in Japan. Antigen-specific immunotherapy (AIT) is the only available curative treatment for JCP. However, low compliance and persistence have been reported among patients subcutaneously or sublingually administered AIT comprising a conventional antigen derived from a pollen extract. To address these issues, many research studies have focused on developing a safer, simpler, and more effective AIT for JCP. Here, we review the novel antigens that have been developed for JCP AIT, discuss their different administration routes, and present the effects of anti-allergy treatment. Then, we describe a new form of AIT called transcutaneous immunotherapy (TCIT) and its solid-in-oil (S/O) nanodispersion formulation, which is a promising antigen delivery system. Finally, we discuss the applications of S/O nanodispersions for JCP TCIT. In this context, we predict that TCIT delivery by using a S/O nanodispersion loaded with novel antigens may offer an easier, safer, and more effective treatment option for JCP patients.

14.
Eur J Pharm Sci ; 155: 105521, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32822808

RESUMEN

The aim of the current study was to modify the oral absorption of risedronate sodium (RS) using solid-in-oil nanodispersions (SONDs) technology. The oral therapeutic effect of RS is limited in vivo because of its low membrane permeability and the formation of insoluble precipitates with bivalent cations (such as Ca2+) in the gastrointestinal (GI) tract.We used SONDs to prepare medium-chain triglyceride (MCT)-based nanodispersions of the hydrophilic drug, which used the oral absorption mechanism of MCT digestion to improve bioavailability of RS in vivo. SONDs exhibited high encapsulation efficiency of RS and excellent enzymatic degradation-dependent release behavior. The result of an everted gut sac test showed that the Papp value of the SONDs was 6.29-fold (p<0.05) higher than that of RS aqueous solutions in simulated intestinal fluid containing 5 mM Ca2+, this was because MCT can be digested to form the fatty acids C8 and C10, which have an adsorption-promoting effect on RS. Further, solid-in-oil-in-water (S/O/W) emulsion droplets formedafter emulsification by bile salts and MCT digestionwere effective in disrupting epithelial tight junctions (TJs), facilitating the paracellular permeation of RS throughout the intestine. Moreover, in vivo absorption study in rats revealed that the AUC0-12h of RS in SONDs was approximately 4.56-fold (p<0.05) higher than with RS aqueous solutions at the same dose (15 mg/kg). This approach demonstrates a potential drug delivery system to improve the bioavailability of risedronate sodium.


Asunto(s)
Absorción Intestinal , Administración Oral , Animales , Disponibilidad Biológica , Emulsiones , Ratas , Ácido Risedrónico
15.
Int J Pharm ; 582: 119335, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32311469

RESUMEN

Transdermal delivery of drugs is more challenging for drugs that are insoluble or sparingly soluble in water and most organic solvents. To overcome this problem, ionic liquid (IL)-mediated ternary systems have been suggested as potential drug carriers. Here, we report potent ternary (IL-EtOH-IPM) systems consisting of biocompatible ILs, ethanol (EtOH), and isopropyl myristate (IPM) that can dissolve a significant amount of the sparingly soluble drug acyclovir (ACV). The ternary systems were optically transparent and thermodynamically stable with a wide range of IL pertinence. An in vitro drug permeation study showed that the ILs in the ternary systems dramatically enhanced ACV permeation into and across the skin. Fourier Transform Infrared spectroscopy of the stratum corneum (sc) after treatment with ternary systems showed that the skin barrier function was reduced by disturbance of the regularly ordered arrangement of corneocytes and modification of the surface properties of the sc during permeation. Histological analysis, and skin irritation studies using a reconstructed human epidermis model showed the safety profile of the ternary system, and there were no significant changes in the structures of the sc, epidermis, and dermis. Therefore, ternary systems containing biocompatible ILs are promising for transdermal delivery of insoluble or sparingly soluble drugs.


Asunto(s)
Aciclovir/administración & dosificación , Aminoácidos/química , Colina/química , Portadores de Fármacos , Absorción Cutánea , Piel/metabolismo , Aciclovir/química , Aciclovir/metabolismo , Administración Cutánea , Aminoácidos/toxicidad , Animales , Línea Celular , Colina/toxicidad , Composición de Medicamentos , Etanol/química , Femenino , Humanos , Líquidos Iónicos , Ratones Endogámicos BALB C , Miristatos/química , Solubilidad , Solventes/química , Porcinos , Porcinos Enanos
16.
Materials (Basel) ; 13(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992758

RESUMEN

The transplantation of engineered three-dimensional (3D) bone graft substitutes is a viable approach to the regeneration of severe bone defects. For large bone defects, an appropriate 3D scaffold may be necessary to support and stimulate bone regeneration, even when a sufficient number of cells and cell cytokines are available. In this study, we evaluated the in vivo performance of a nanogel tectonic 3D scaffold specifically developed for bone tissue engineering, referred to as nanogel cross-linked porous-freeze-dry (NanoCliP-FD) gel. Samples were characterized by a combination of micro-computed tomography scanning, Raman spectroscopy, histological analyses, and synchrotron radiation-based Fourier transform infrared spectroscopy. NanoCliP-FD gel is a modified version of a previously developed nanogel cross-linked porous (NanoCliP) gel and was designed to achieve highly improved functionality in bone mineralization. Spectroscopic imaging of the bone tissue grown in vivo upon application of NanoCliP-FD gel enables an evaluation of bone quality and can be employed to judge the feasibility of NanoCliP-FD gel scaffolding as a therapeutic modality for bone diseases associated with large bone defects.

17.
ACS Biomater Sci Eng ; 5(5): 2297-2306, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33405780

RESUMEN

Cancer vaccines aim to prevent or inhibit tumor growth by inducing an immune response to tumor-associated antigens (TAAs) encoded by or present in the vaccine. Previous work has demonstrated that effective antitumor immunity can be induced using a codelivery system in which nonspecific immunostimulatory molecules are administered together with TAAs. In this study, we investigated the antitumor effects of a solid-in-oil (S/O) nanodispersion system containing a model TAA, ovalbumin (OVA), and resiquimod (R-848), a small molecular Toll-like receptor 7/8 ligand, which induces an antigen-nonspecific cellular immune response that is crucial for the efficacy of cancer vaccines. R-848 was contained in the outer oil phase of S/O nanodispersion. Analysis of OVA and R-848 permeation in mouse skin after application of an R-848 S/O nanodispersion indicated that R-848 rapidly permeated the skin and preactivated Langerhans cells, resulting in efficient uptake of OVA and migration of antigen-loaded Langerhans cells to the draining lymph nodes. Transcutaneous immunization of mice with an R-848 S/O nanodispersion inhibited the growth of E.G7-OVA tumors and prolonged mouse survival to a greater extent than did immunization with an S/O nanodispersion containing OVA alone. Consistent with this observation, antigen-specific secretion of the Th1 cytokine interferon-γ and cytolytic activity were both high in splenocytes isolated from mice immunized with R-848 S/O. Our results thus demonstrate that codelivery of R-848 significantly amplified the antitumor immune response induced by antigen-containing S/O nanodispersions and further suggest that S/O nanodispersions may be effective formulations for codelivery of TAAs and R-848 in transcutaneous cancer vaccines.

18.
Int J Pharm ; 572: 118777, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678377

RESUMEN

En masse vaccination is a promising strategy for combatting infectious diseases. Intranasal vaccination is a viable route of mass vaccination, and it could be performed easily via needle-free administration. However, it is not widely used because it tends not to evoke sufficient immunity. The aim of the present study was to improve the performance of intranasal vaccination by extending the amount of time that administered antigens remain in the nasal cavity, and enhancing immune responses via a nanocarrier-based adjuvant. A simple and safe solid-in-oil (S/O) system was investigated as a nanocarrier in intranasal vaccination. S/O nanodispersions are oil-based dispersions of antigens coated with surfactants. Because of the mucoadhesive capacities of surfactant and oil they have high potential to extend the amount of time that administered antigens remain in the nasal cavity, and can induce strong immune responses due to a nanocarrier-based adjuvant effect. In nasal absorption experiments antigens administered intranasally via S/O nanodispersions remained in the nasal cavity longer and induced strong mucosal and systemic immune responses. Histopathology analysis indicated that S/O nanodispersions did not modify the nasal epithelium or cilia, suggesting non-toxicity of the carrier. These results indicate the potential of intranasal vaccination using S/O nanodispersions for future vaccination.


Asunto(s)
Adyuvantes Inmunológicos/química , Inmunidad Mucosa/inmunología , Nanopartículas/química , Mucosa Nasal/inmunología , Aceites/química , Tensoactivos/química , Adyuvantes Inmunológicos/administración & dosificación , Administración Intranasal/métodos , Animales , Antígenos/administración & dosificación , Antígenos/química , Antígenos/inmunología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunación/métodos
19.
Chem Commun (Camb) ; 55(54): 7737-7740, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31184357

RESUMEN

We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.

20.
Int J Pharm ; 565: 219-226, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31077761

RESUMEN

In order to prevent common hypersensitivity reactions to paclitaxel injections (Taxol), we previously reported an ionic liquid-mediated paclitaxel (IL-PTX) formulation with small particle size and narrow size distribution. The preliminary work showed high PTX solubility in the IL, and the formulation demonstrated similar antitumor activity to Taxol, while inducing a smaller hypersensitivity effect in in vitro cell experiments. In this study, the stability of the IL-PTX formulation was monitored by quantitative HPLC analysis, which showed that IL-PTX was more stable at 4 °C than at room temperature. The in vivo study showed that the IL-PTX formulation could be used in a therapeutic application as a biocompatible component of a drug delivery system. To assess the in-vivo biocompatibility, IL or IL-mediated formulations were administered intravenously by maintaining physiological buffered conditions (neutral pH and isotonic salt concentration). From in vivo pharmacokinetics data, the IL-PTX formulation was found to have a similar systemic circulation time and slower elimination rate compared to cremophor EL mediated paclitaxel (CrEL-PTX). Furthermore, in vivo antitumor and hypersensitivity experiments in C57BL/6 mice revealed that IL-PTX had similar antitumor activity to CrEL-PTX, but a significantly smaller hypersensitivity effect compared with CrEL-PTX. Therefore, the IL-mediated formulation has potential to be an effective and safe drug delivery system for PTX.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Glicerol/análogos & derivados , Líquidos Iónicos/administración & dosificación , Paclitaxel/administración & dosificación , Administración Intravenosa , Animales , Antineoplásicos Fitogénicos/farmacocinética , Línea Celular Tumoral , Hipersensibilidad a las Drogas , Femenino , Glicerol/administración & dosificación , Glicerol/farmacocinética , Líquidos Iónicos/farmacocinética , Melanoma/tratamiento farmacológico , Ratones Endogámicos C57BL , Paclitaxel/farmacocinética , Neoplasias Cutáneas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA