Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Nat Prod ; 87(5): 1358-1367, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656153

RESUMEN

cis-12-oxo-Phytodieneoic acid-α-monoglyceride (1) was isolated from Arabidopsis thaliana. The chemical structure of 1 was elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by FDMS and HRFDMS data. The absolute configuration of the cis-OPDA moiety in 1 was determined by comparison of 1H NMR spectra and ECD measurements. With respect to the absolute configuration of the ß-position of the glycerol backbone, the 2:3 ratio of (S) to (R) was determined by making ester-bonded derivatives with (R)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride and comparing 1H NMR spectra. Wounding stress did not increase endogenous levels of 1, and it was revealed 1 had an inhibitory effect of A. thaliana post germination growth. Notably, the endogenous amount of 1 was higher than the amounts of (+)-7-iso-jasmonic acid and (+)-cis-OPDA in intact plants. 1 also showed antimicrobial activity against Gram-positive bacteria, but jasmonic acid did not. It was also found that α-linolenic acid-α-monoglyceride was converted into 1 in the A. thaliana plant, which implied α-linolenic acid-α-monoglyceride was a biosynthetic intermediate of 1.


Asunto(s)
Arabidopsis , Estructura Molecular , Monoglicéridos/farmacología , Monoglicéridos/química , Ciclopentanos/farmacología , Ciclopentanos/química , Oxilipinas/química , Oxilipinas/farmacología , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/aislamiento & purificación , Germinación/efectos de los fármacos
2.
Physiol Plant ; 175(2): e13898, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36974502

RESUMEN

Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.


Asunto(s)
Ácido Abscísico , Marchantia , Ácido Abscísico/metabolismo , Marchantia/genética , Marchantia/metabolismo , Azúcares/metabolismo , Desecación , Sacarosa/metabolismo
3.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011393

RESUMEN

Abscisic acid (ABA, 1) is a plant hormone that regulates various plant physiological processes such as seed developing and stress responses. The ABA signaling system has been elucidated; binding of ABA with PYL proteins triggers ABA signaling. We have previously reported a new method to isolate a protein targeted with a bioactive small molecule using a biotin linker with alkyne and amino groups, a protein cross-linker, and a bioactive small molecule with an azido group (azido probe). This method was used to identify the unknown ABA binding protein of Arabidopsis thaliana. As a result, AtTrxh3, a thioredoxin, was isolated as an ABA binding protein. Our developed method can be applied to the identification of binding proteins of bioactive compounds.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas/metabolismo , Ácido Abscísico/química , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Portadoras , Cromatografía Liquida , Estructura Molecular , Unión Proteica , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación
4.
Nat Chem Biol ; 14(5): 480-488, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632411

RESUMEN

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/química , Regulación de la Expresión Génica de las Plantas , Marchantia/metabolismo , Oxilipinas/química , Hojas de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Evolución Molecular , Prueba de Complementación Genética , Genoma de Planta , Isoleucina/análogos & derivados , Isoleucina/química , Ligandos , Marchantia/genética , Mutagénesis , Mutación , Filogenia , Reguladores del Crecimiento de las Plantas , Transducción de Señal
5.
Biosci Biotechnol Biochem ; 84(9): 1780-1787, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32479137

RESUMEN

Salicylic acid (SA) and methyl salicylate (MeSA) are synthesized in many plants and are crucial components that establish their disease responses. The metabolism of airborne MeSA to SA has been previously reported. In this report, it was found that SA glucose ester (SAGE), ether (SAG), and salicyloyl-L-aspartic acid (SA-Asp) are metabolites of airborne MeSA. Furthermore, it was found that airborne MeSA was able to increase the endogenous amount of rosmarinic acid in Perilla frutescens, which is known as one of the functional components that contributes to the maintenance of human health.


Asunto(s)
Aire/análisis , Plantas/metabolismo , Salicilatos/metabolismo , Glucosa/metabolismo
6.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093080

RESUMEN

Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.


Asunto(s)
Bryopsida/metabolismo , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Bryopsida/genética , Cromatografía Liquida , Ciclo del Ácido Cítrico/genética , Ciclopentanos/metabolismo , Metabolismo Energético/genética , Ácidos Grasos Insaturados/deficiencia , Ácidos Grasos Insaturados/genética , Glucólisis/genética , Oxidorreductasas Intramoleculares/genética , Oxilipinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas/genética , Pliegue de Proteína , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética , Espectrometría de Masas en Tándem
7.
Plant Physiol ; 177(4): 1704-1716, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934297

RESUMEN

Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Indenos/farmacología , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
8.
Bioorg Med Chem Lett ; 29(21): 126634, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563414

RESUMEN

Target protein identification of bioactive small molecules is one of the most important research in forward chemical genetics. The affinity chromatography technique to use a resin bound with a small molecule is often used for identification of a target protein of a bioactive small molecule. Here we report a new method to isolate a protein targeted with a bioactive small molecule using a biotin linker with alkyne and amino groups, protein cross-linker containing disulfide bond, and a bioactive small molecule with an azido group (azido probe). After an azido probe is associated with a target protein, the complex of a target protein and azido probe is covalently bound through the biotin linker by azide-alkyne Huisgen cycloaddition and protein cross-linker containing disulfide bond. This ternary complex is immobilized on an affinity matrix with streptavidin, and then the target protein is selectively eluted with a buffer containing a reducing agent for cleavage of disulfide bonds. This method uses a probe having an azido group, which a small functional group, and has the possibility to be a solution strategy to overcome the hindrance of a functional group introduced into the probe that reduces association a target protein. The effectiveness of the method in this study was shown using linker 1, 3'-azidoabscisic acid 3, and protein cross-linker containing a disulfide bond (DTSSP 5).


Asunto(s)
Ácido Abscísico/metabolismo , Alquinos/química , Aminas/química , Biotina/química , Proteínas de Plantas/química , Proteínas Recombinantes/química , Estreptavidina/química , Ácido Abscísico/análogos & derivados , Ácido Abscísico/química , Proteínas de Arabidopsis/genética , Azidas/química , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Reactivos de Enlaces Cruzados/química , Reacción de Cicloadición , Disulfuros/química , Escherichia coli/química , Escherichia coli/genética , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Succinimidas/química , Espectrometría de Masas en Tándem
9.
Biosci Biotechnol Biochem ; 83(12): 2190-2193, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31342844

RESUMEN

In our previous report, it was found that Lasiodiplodia theobromae produced cis-jasmone via partially utilizing the biosynthetic pathway of JA. A feeding experiment using uniformly 13C-labeled α-linolenic acid, which was added to the culture media of the fungus, strongly supported that the fungus produced CJ via the decarboxylation step of the biosynthetic pathway.


Asunto(s)
Ascomicetos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido alfa-Linolénico/metabolismo , Ascomicetos/crecimiento & desarrollo , Isótopos de Carbono , Medios de Cultivo , Descarboxilación
10.
Biosci Biotechnol Biochem ; 83(9): 1709-1712, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31088329

RESUMEN

It has been reported that airborne methyl jasmonate (MeJA) was metabolized into jasmonic acid (JA) and jasmonoyl isoleucine (JA-L-Ile). In this report, jasmonoyl valine (JA-L-Val), 12-hydroxy JA (12OHJA), and 12-glucosyloxy JA (12OGlcJA) were identified as metabolites originating from airborne MeJA using tomato (Solanum lycopersicum). Furthermore, the preferable conversion of (-)-MeJA (natural form) into 12OHJA, 12OGlcJA, JA-L-Ile, and JA-L-Val was observed.


Asunto(s)
Ciclopentanos/farmacología , Oxilipinas/farmacología , Ciclopentanos/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Oxilipinas/química
11.
Biosci Biotechnol Biochem ; 83(9): 1650-1654, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31088333

RESUMEN

The pathogenic fungi Gibberella fujikuroi and Fusarium commune produce jasmonic acid. The application of volatile deuterium-labeled methyl jasmonate increased the amount of nonlabeled JA present in G. fujikuroi and F. commune. These results indicate that the fungi have the ability to react with airborne methyl jasmonate in a manner similar to a plant.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Fusarium/metabolismo , Gibberella/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Contaminantes Atmosféricos/metabolismo
12.
Bioorg Med Chem Lett ; 28(4): 783-786, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29306572

RESUMEN

We synthesized a novel linker (1) with biotin, alkyne and amino groups for the identification of target proteins using a small molecule that contains an azide group (azide probe). The alkyne in the linker bound the azide probe via an azide-alkyne Huisgen cycloaddition. A protein cross-linker effectively bound the conjugate of the linker and an azide probe with a target protein. The covalently bound complex was detected by western blotting. Linker 1 was applied to a model system using an abscisic acid receptor, RCAR/PYR/PYL (PYL). Cross-linked complexes of linker 1, the azide probes and the target proteins were successfully visualized by western blotting. This method of target protein identification was more effective than a previously developed method that uses a second linker with biotin, alkyne, and benzophenone (linker 2) that acts to photo-crosslink target proteins. The system developed in this study is a method for identifying the target proteins of small bioactive molecules and is different from photo-affinity labelling.


Asunto(s)
Alquinos/química , Proteínas de Arabidopsis/química , Biotina/análogos & derivados , Biotina/química , Sondas Moleculares/química , Alquinos/síntesis química , Arabidopsis/química , Azidas/síntesis química , Azidas/química , Biotina/síntesis química , Western Blotting , Química Clic , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Reacción de Cicloadición , Escherichia coli/química , Proteínas de Escherichia coli/química , Oxidorreductasas Intramoleculares/química , Luminiscencia , Lisina/análogos & derivados , Lisina/síntesis química , Lisina/química , Sondas Moleculares/síntesis química
13.
Bioorg Med Chem Lett ; 28(6): 1020-1023, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29486965

RESUMEN

The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Oxidorreductasas Intramoleculares/metabolismo , Isoleucina/biosíntesis , Lipooxigenasa/metabolismo , Ácido alfa-Linolénico/metabolismo , Arabidopsis/química , Ciclización , Ácidos Grasos Insaturados/química , Isoleucina/química , Estructura Molecular , Ácido alfa-Linolénico/química
14.
Plant Cell Physiol ; 58(4): 789-801, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28340155

RESUMEN

Jasmonic acid (JA) is involved in a variety of physiological responses in seed plants. However, the detection and role of JA in lycophytes, a group of seedless vascular plants, have remained elusive until recently. This study provides the first evidence of 12-oxo-phytodienoic acid (OPDA), JA and jasmonoyl-isoleucine (JA-Ile) in the model lycophyte Selaginella moellendorffii. Mechanical wounding stimulated the accumulation of OPDA, JA and JA-Ile. These data were corroborated by the detection of enzymatically active allene oxide synthase (AOS), allene oxide cyclase (AOC), 12-oxo-phytodienoic acid reductase 3 (OPR3) and JA-Ile synthase (JAR1) in S. moellendorffii. SmAOS2 is involved in the first committed step of JA biosynthesis. SmAOC1 is a crucial enzyme for generating the basic structure of jasmonates and is actively involved in the formation of OPDA. SmOPR5, a functionally active OPR3-like enzyme, is also vital for the reduction of (+)-cis-OPDA, the only isomer of the JA precursor. The conjugation of JA to Ile by SmJAR1 demonstrates that S. moellendorffii produces JA-Ile. Thus, the four active enzymes have characteristics similar to those in seed plants. Wounding and JA treatment induced the expression of SmAOC1 and SmOPR5. Furthermore, JA inhibited the growth of shoots in S. moellendorffii, which suggests that JA functions as a signaling molecule in S. moellendorffii. This study proposes that JA evolved as a plant hormone for stress adaptation, beginning with the emergence of vascular plants.


Asunto(s)
Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/metabolismo , Ciclopentanos/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Isoleucina/metabolismo , Isoleucina/farmacología , Ligasas/metabolismo , Oxidorreductasas/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Selaginellaceae/efectos de los fármacos , Selaginellaceae/genética
15.
J Nat Prod ; 80(4): 872-878, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28333463

RESUMEN

A monoglyceride (1) has been reported to possess an antibolting effect in radish (Raphanus sativus), but its absolute configuration at the C-2 position was not determined earlier. In this work, the absolute configuration of 1 was determined to be (2S), and it was also accompanied by one new (2) and two known monoglycerides (3 and 4). The chemical structure of 2 was determined as ß-(7'Z,10'Z,13'Z)-hexadecatrienoic acid monoglyceride (ß-16:3 monoglyceride). Qualitative and quantitative analytical methods for compounds 1-4 were developed, using two deuterium-labeled compounds (8 and 9) as internal standards. The results revealed a broader range of distribution of 1-4 in several annual winter crops. It was also found that these isolated compounds have an inhibitory effect on the root elongation of Arabidopsis thaliana seedlings at concentrations of 25 and 50 µM in the medium. However, the inhibitory effect of 1 was not dependent on coronatin-insensitive 1 (COI1) protein, which may suggest the involvement of an unidentified signaling system other than jasmonic acid signaling.


Asunto(s)
Ácidos Grasos Insaturados/química , Monoglicéridos/aislamiento & purificación , Monoglicéridos/farmacología , Raphanus/química , Arabidopsis/efectos de los fármacos , Glicéridos/farmacología , Estructura Molecular , Monoglicéridos/química , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Estereoisomerismo
16.
Biosci Biotechnol Biochem ; 81(11): 2071-2078, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28950768

RESUMEN

It has been reported that treatment with yeast cell wall extract (YCWE) induces PDF1 and PR-1 gene expression; these transcripts are important markers of plant disease resistance, though the detailed signaling mechanisms that induce these defense responses are still unknown. In this report, we found that YCWE treatment triggered rice cell suspension cultures to accumulate phenylalanine (Phe), cis-12-oxo-phytodienoic acid (OPDA), 12-hydroxyjasmonoyle isoleucine (12OHJA-Ile), and azelaic acid (AzA). YCWE treatment also reduced endogenous triacylglycerol (TG) content. The addition of 13C-uniform-labeled oleic, linoleic and linolenic acids to the rice cell suspension cultures gave rise to 13C-uniform-labeled AzA. It was also found that YCWE treatment for Arabidopsis thaliana resulted in accumulations of OPDA, AzA, Phe, and camalexin together with enhanced resistance against Botrytis cinerea infection. This suggested that YCWE treatment upon plants may activate JA and AzA signaling systems to induce plant disease resistance.


Asunto(s)
Arabidopsis/efectos de los fármacos , Pared Celular/química , Resistencia a la Enfermedad/efectos de los fármacos , Oryza/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Saccharomyces/citología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/fisiología , Ácidos Dicarboxílicos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Isoleucina/metabolismo , Oryza/inmunología , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
17.
Biosci Biotechnol Biochem ; 81(2): 249-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27760496

RESUMEN

Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Proteínas de Transporte de Monosacáridos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Isoleucina/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transporte de Proteínas
18.
Plant Cell Physiol ; 57(5): 986-99, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26917631

RESUMEN

Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Productos Biológicos/farmacología , Ciclohexanos/farmacología , Compuestos Epoxi/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclohexanos/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sequías , Compuestos Epoxi/química , Regulación de la Expresión Génica de las Plantas , Giberelinas/antagonistas & inhibidores , Proteínas de Plantas , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo
19.
Biosci Biotechnol Biochem ; 80(3): 432-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26738721

RESUMEN

A novel linker containing biotin, alkyne and benzophenone groups (1) was synthesized to identify target proteins using a small molecule probe. This small molecule probe contains an azide group (azide probe) that reacts with an alkyne in 1 via an azide-alkyne Huisgen cycloaddition. Cross-linking of benzophenone to the target protein formed a covalently bound complex consisting of the azide probe and the target protein via 1. The biotin was utilized via biotin-avidin binding to identify the cross-linked complex. To evaluate the effectiveness of 1, it was applied in a model system using an allene oxide synthase (AOS) from the model moss Physcomitrella patens (PpAOS1) and an AOS inhibitor that contained azide group (3). The cross-linked complex consisting of PpAOS1, 1 and 3 was resolved via SDS-PAGE and visualized using a chemiluminescent system. The method that was developed in this study enables the effective identification of target proteins.


Asunto(s)
Alquinos/química , Azidas/química , Benzofenonas/química , Biotina/química , Etiquetas de Fotoafinidad , Proteínas/química , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética
20.
Biosci Biotechnol Biochem ; 80(12): 2357-2364, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27558085

RESUMEN

12-Oxo-phytodienoic acid (OPDA) is induced by mechanical wounding and suppresses the growth of Physcomitrella patens; OPDA is considered as a signal compound in this moss species. In this study, a proteomic analysis of P. patens protonemata treated with OPDA was performed. The abundance levels of 41 proteins were significantly altered by OPDA, with decreased levels for 40 proteins. The proteins for which abundance decreased in response to OPDA at the protonema developmental stage were mainly involved in the metabolism of proteins and carbohydrates. The effects of inhibition on protein abundance are likely a major physiological function of OPDA in P. patens. OPDA also suppressed the expression of histones at the protein level and gene transcription level. Suppression of histone expression might be an OPDA-specific function in P. patens protonemata. In P. patens, a subset of the physiological responses caused by OPDA is shown to differ between protonema and gametophore developmental stages.


Asunto(s)
Bryopsida/metabolismo , Ácidos Grasos Insaturados/farmacología , Proteómica , Bryopsida/efectos de los fármacos , Bryopsida/genética , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Histonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA