Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anat ; 244(1): 159-169, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602519

RESUMEN

The symmetry of the right and left bronchi, proposed in a previous comparative anatomical study as the basic model of the mammalian bronchial tree, was examined to determine if it applied to the embryonic human bronchial tree. Imaging data of 41 human embryo specimens at Carnegie stages (CS) 16-23 (equivalent to 6-8 weeks after fertilization) belonging to the Kyoto collection were obtained using phase-contrast X-ray computed tomography. Three-dimensional bronchial trees were then reconstructed from these images. Bronchi branching from both main bronchi were labeled as dorsal, ventral, medial, or lateral systems based on the branching position with numbering starting cranially. The length from the tracheal bifurcation to the branching point of the labeled bronchus was measured, and the right-to-left ratio of the same labeled bronchus in both lungs was calculated. In both lungs, the human embryonic bronchial tree showed symmetry with an alternating pattern of dorsal and lateral systems up to segmental bronchus B9 as the basic shape, with a more peripheral variation. This pattern is similar to that described in adult human lungs. Bronchial length increased with the CS in all labeled bronchi, whereas the right-to-left ratio was constant at approximately 1.0. The data demonstrated that the prototype of the human adult bronchial branching structure is formed and maintained in the embryonic stage. The morphology and branching position of all lobar bronchi and B6, B8, B9, and the subsegmental bronchus of B10 may be genetically determined. On the other hand, no common structures between individual embryos were found in the peripheral branches after the subsegmental bronchus of B10, suggesting that branch formation in this region is influenced more by environmental factors than by genetic factors.


Asunto(s)
Bronquios , Pulmón , Adulto , Animales , Humanos , Bronquios/anatomía & histología , Bronquios/diagnóstico por imagen , Bronquios/embriología , Pulmón/anatomía & histología , Pulmón/diagnóstico por imagen , Pulmón/embriología , Tomografía Computarizada por Rayos X/métodos , Tráquea/anatomía & histología , Tráquea/diagnóstico por imagen , Tráquea/embriología
2.
J Anat ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808647

RESUMEN

Previous studies have poorly described the initial development process of the tendinous intersections of the rectus abdominis muscle (RAM). The present study aimed to observe the formation of tendinous intersections in the RAM during the early fetal period using diffusion tensor imaging (DTI). Fifteen human fetal specimens (crown-rump length [CRL]: 39.5-93.7 mm) were selected. Three-dimensional measurements revealed that Zone-4 (i.e., the zone between the pubic symphysis and the caudal base of the umbilical ring in the RAM) had a smaller width and was thicker than Zone-1 and Zone-2 (i.e., the zones between the costal arch and the cranial base of the umbilical ring) and Zone-3 (i.e., the zone at the umbilical ring). Characteristics of tendinous intersections in the RAM during the early fetal period were assessed according to number, size, type, laterality, and sex. The mean number of tendinous intersections on both sides was 3.1 (range: 2.0-4.0), and 21% of specimens had only two tendinous intersections, which was higher than that reported in previous adult studies. The present data suggest that the formation of tendinous intersections was still in progress in specimens with two tendinous intersections in the RAM and that the third tendinous intersection was formed in Zone-2. Ordinal logistic regression via generalized estimating equations revealed that the odds for a higher type of tendinous intersections in Zone-1 and Zone-2 were significantly higher than those in Zone-4 (adjusted odds ratio: 14.85, 8.84). The odds for the presence of incomplete types (tendinous intersections that could not completely transverse the RAM) in Zone-3 were significantly higher than those in Zone-1 (adjusted odds ratio: 7.4). The odds for missing tendinous intersections in Zone-4 were significantly higher than those in Zone-1 (adjusted odds ratio: 20.5). These zonal differences in the formation of tendinous intersections were consistent with those observed in previous adult studies. In this study, DTI detected tendinous intersections in a sample with a CRL of 45.8 mm (approximately 11 weeks of gestation), which is earlier than that in previous histological findings, indicating that the RAM does not have mature tendinous intersections until the 17th week of gestation. In conclusion, DTI could detect the premature differentiation of tendinous intersection formation. Our data may aid in elucidating the developmental processes of tendinous intersections in the RAM.

3.
J Anat ; 244(1): 142-158, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37559438

RESUMEN

The left atrium wall has several origins, including the body, appendage, septum, atrial-ventricular canal, posterior wall, and venous component. Here, we describe the morphogenesis of left atrium based on high-resolution imaging (phase-contrast X-ray computed tomography and magnetic resonance imaging). Twenty-three human embryos and 19 fetuses were selected for this study. Three-dimensional cardiac images were reconstructed, and the pulmonary veins and left atrium, including the left atrial appendage, were evaluated morphologically and quantitatively. The positions of the pericardial reflections were used as landmarks for the border of the pericardial cavity. The common pulmonary vein was observed in three specimens at Carnegie stages 17-18. The pericardium was detected at the four pulmonary veins (left superior, left inferior, right superior, and right inferior pulmonary veins) at one specimen at Carnegie stage 18 and all larger specimens, except the four samples. Our results suggest that the position of the pericardial reflections was determined at two pulmonary veins (right and left pulmonary vein) and four pulmonary veins almost simultaneously when the dorsal mesocardial connection between the embryo and heart regressed. The magnetic resonance images and reconstructed heart cavity images confirmed that the left atrium folds were present at the junction between the body and venous component. Three-dimensional reconstruction showed that the four pulmonary veins entered the dorsal left atrium tangentially from the lateral to the medial direction. More specifically, the right pulmonary veins entered at a greater angle than the left pulmonary veins. The distance between the superior and inferior pulmonary veins was shorter than that between the left and right pulmonary veins. Three-dimensional reconstruction showed that the venous component increased proportionally with growth. No noticeable differences in discrimination between the right and left parts of the venous component emerged, while the junction between the venous component and body gradually became inconspicuous but was still recognizable by the end of the observed early fetal period. The left superior pulmonary vein had the smallest cross-sectional area and most flattened shape, whereas the other three were similar in area and shape. The left atrial appendage had a large volume in the center and extended to the periphery as a lobe-like structure. The left atrial appendage orifice increased in the area and tended to become flatter with growth. The whole left atrium volume^(1/3) increased almost proportionally with growth, parallel to the whole heart volume. This study provided a three-dimensional and quantitative description of the developmental process of the left atrium, comprising the venous component and left atrial appendage formation, from the late embryonic to the early fetal stages.


Asunto(s)
Apéndice Atrial , Venas Pulmonares , Humanos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/anatomía & histología , Apéndice Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Feto , Morfogénesis
4.
Cells Tissues Organs ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185104

RESUMEN

INTRODUCTION: The posterior meniscofemoral ligament (pMFL) of knee joint is a ligament that runs posterior to the posterior cruciate ligament (PCL) and it is known that the height of the pMFL attachment site causes meniscus avulsion. Therefore, understanding the three-dimensional (3D) structure of the pMFL attachment site is essential to better understand the pathogenesis of meniscus disorders. However, the developmental process of pMFL has not been well investigated. The purpose of this study was to analyze pMFL development in rat knee joints using 3D reconstructed images produced from episcopic fluorescence image capture (EFIC) images and examine its relationship with other knee joint components. METHODS: Knee joints of Wistar rat embryos between embryonic day (E) 16 and E21 were observed with HE stained tissues. Serial EFIC images of the hindlimbs of E17-E21 were respectively captured, from which 3D images were reconstructed and the features of pMFL structure: length and angle, were measured. Besides, the chronological volume changes and the volume ratio of the knee joint components compared to E17 were calculated to identify the differences in growth by components. RESULTS: pMFL was observed from E17 and was attached to the medial femoral condyle and lateral meniscus at all developmental stages, as in mature rats. The lack of marked variation in the attachment site and angle of the pMFL with the developmental stage indicates that the pMFL and surrounding knee joint components developed while maintaining their positional relationship from the onset of development. CONCLUSION: Current results may support to congenital etiology of meniscus disorder.

5.
J Anat ; 242(2): 174-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053545

RESUMEN

A precise understanding of human diaphragm development is essential in fetal medicine. To our knowledge, no previous study has attempted a three-dimensional (3-D) analysis and evaluation of diaphragmatic morphogenesis and development from the embryonic to the early fetal period. This study aimed to evaluate the morphogenesis and fibrous architecture of the developing human diaphragm during the late embryonic and early fetal periods. Fifty-seven human embryos and fetuses (crown-rump length [CRL] = 8-88 mm) preserved at the Congenital Anomaly Research Center of Kyoto University and Shimane University were analyzed. 3-D morphogenesis and fiber orientation of the diaphragm were assessed using phase-contrast X-ray computed tomography, T1-weighted magnetic resonance imaging (T1W MRI), and diffusion tensor imaging (DTI). T1W MR images and DTI scans were obtained using a 7-T MR system. The diaphragm was completely closed at Carnegie stage (CS) 20 and gradually developed a dome-like shape. The diaphragm was already in contact with the heart and liver ventrally in the earliest CS16 specimen observed, and the adrenal glands dorsally at CS19 or later. In the fetal period, the diaphragm contacted the gastric fundus in samples with a CRL ≥41 mm, and the spleen in samples with a CRL ≥70 mm. The relative position of the diaphragm with reference to the vertebrae changed rapidly from CS16 to CS19. The most cranial point of the diaphragm was located between the 4th and 8th thoracic vertebrae, regardless of fetal growth, in samples with a CRL of ≥16 mm. Diaphragmatic thickness was nearly uniform (0.15-0.2 mm) across samples with a CRL of 8-41 mm. The sternal, costal, lumbar parts, and the area surrounding the esophageal hiatus thickened with growth in samples with a CRL of ≥46 mm. The thickness at the center of the diaphragm and the left and right hemidiaphragmatic domes did not increase with growth. Tractography showed that the fiber orientation of the sternal, costal, and lumbar parts became more distinct as growth progressed in CS19 or later. All fibers in the costal and lumbar regions ran toward the left and right hemidiaphragmatic domes, except for those running to the caval opening and esophageal hiatus. The fiber orientation patterns from the right and left crura surrounding the esophageal hiatus were classified into three types. Distinct fiber directions between the costal and sternal and between the costal and lumbar diaphragmatic parts were observable in samples with a CRL of ≥46 mm. Anterior costal and sternal fibers ran toward the center. Fiber tracts around the center and the left and right hemidiaphragmatic domes; between the costal and lumbar orientations; and between the costal and sternal orientations showed a tendency for decreasing fractional anisotropy values with fetal growth and showed less density than other areas. In conclusion, we used 3-D thickness assessment and DTI tractography to identify qualitative changes in the muscular and tendonous regions of the diaphragm during the embryonic and early fetal periods. This study provides information on normal human diaphragm development for the progression of fetal medicine and furthering the understanding of congenital anomalies.


Asunto(s)
Diafragma , Imagen de Difusión Tensora , Humanos , Diafragma/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Morfogénesis , Tórax , Feto/diagnóstico por imagen
6.
J Anat ; 241(3): 846-859, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35758553

RESUMEN

The human intestine elongates during the early fetal period, herniates into the extraembryonic coelom (EC), and subsequently returns to the abdominal cavity (AC). The process by which the intestinal loop returns to the abdomen remains unclear. This study aimed to document positional changes in the intestinal tract with the superior mesenteric artery (SMA) and branches in 3D to elucidate the intestinal loop return process (transition phase). Serial histological cross-sections from human fetuses (crown-rump length [CRL] range: 30-50 mm) in the herniation (n = 1), transition (n = 7), and return (n = 2) phases were selected from the Blechschmidt Collection. The distribution of the SMA trunk and all intestinal and sister branches entering the intestines was visualized so that positional changes in branches were continuous from the herniation to return phases. Positional changes in SMA branches proceeded in an orderly and structured manner; this is essential for continuous blood supply via the SMA to the intestine during transition and for safe intestinal return. Changes in the SMA distribution proceeded prior to the detection of initiation of intestinal tract return, which might start earlier and last much longer than our consensus (i.e., that the return of the herniated intestine begins when the CRL is approximately 40 mm and ends within a short time). In the cross-section of the umbilical ring in the herniation and transition phases, one proximal limb and one distal limb were observed with SMA intestinal branches, which were fully packed in the umbilical ring. The SMA branches were aligned from inferior to superior along the SMA main trunk. In the herniation phase, the distribution of 3rd-13th branches aligned from proximal inferior medial to distal superior left with a slight spiral in the EC, the tips of which suggested an orderly running course of the small intestine. In the transition phase, SMA branches running across the umbilical ring that fed the small intestine were observed, suggesting that the intestine was uncoiled and ran across the umbilical ring almost vertically. The estimated curvature value supported the phenomenon of uncoiling at the umbilical ring; the value at the umbilical ring was lesser than that in the AC and EC. During the transition phase, the proximal and distal limbs transversely ran side by side in the AC, umbilical ring, limbs on the cranial side, and mesentery on the caudal side. The SMA trunk and its branches ran in parallel, cranially to caudally aligned in the mesentery. This layout of the umbilical ring was maintained during the transition phase. In the return phase, the SMA trunk was gently curved from the upper left to the lower right of the AC; around 12 branches spread with a winding staircase appearance. The intestinal tract reached its definitive position immediately after all tissues crossed the umbilical ring and released any restriction. Each SMA branch and the corresponding region of the intestinal tract form a unit and change their position, though the conformation may change within each unit when running across the umbilical ring. We suggest that the slide-stack model requires revision.


Asunto(s)
Feto , Hernia Umbilical , Abdomen , Humanos , Intestinos
7.
J Anat ; 241(6): 1287-1302, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35983845

RESUMEN

Rapid shelf elevation and contact of the secondary palate and fusion reportedly occur due to a growth-related equilibrium change in the structures within the oro-nasal cavity. This study aimed to quantitatively evaluate complex three-dimensional morphological changes and their effects on rapid movements, such as shelf elevation and contact, and fusion. Morphological changes during secondary palate formation were analyzed using high-resolution digitalized imaging data (phase-contrast X-ray computed tomography and magnetic resonance images) obtained from 22 human embryonic and fetal samples. The three-dimensional images of the oro-nasal structures, including the maxilla, palate, pterygoid hamulus, tongue, Meckel's cartilage, nasal cavity, pharyngeal cavity, and nasal septum, were reconstructed manually. The palatal shelves were not elevated in all the samples at Carnegie stage (CS)21 and CS22 and in three samples at CS23. In contrast, the palatal shelves were elevated but not in contact in one sample at CS23. Further, the palatal shelves were elevated and fused in the remaining four samples at CS23 and all three samples from the early fetal period. For each sample, 70 landmarks were subjected to Procrustes and principal component (PC) analysis. PC-1 accounted for 67.4% of the extracted gross changes before and after shelf elevations. Notably, the PC-1 values of the negative and positive value groups differed significantly. The PC-2 value changed during the phases in which the change in the PC-1 value was unnaturally slow and stopped at CS22 and the first half of CS23. This period, defined as the "approach period", corresponds to the time before dynamic changes occur as the palatal shelves elevate, the tongue and mandibular tip change their position and shape, and secondary palatal shelves contact and fuse. During the "approach period", measurements of PC-2 changes showed that structures on the mandible (Meckel's cartilage and tongue) and maxilla (palate and nasal cavity) did not change positions, albeit both groups of structures appeared to be compressed anterior-posteriorly. However, during and after shelf elevation, measurements of PC-1 changes showed significant changes between maxillary and mandibular structures, particularly positioning of the shelves above the tongue and protrusion of the tongue and mandible. These results suggest an active role for Meckel's cartilage growth in repositioning the tongue to facilitate shelf elevation. The present data representing three distinct phases of secondary palate closure in humans can advance the understanding of morphological growth changes occurring before and after the horizontal positioning of palatal shelves and their fusion to close the secondary palate in humans successfully.


Asunto(s)
Fisura del Paladar , Hueso Paladar , Humanos , Hueso Paladar/diagnóstico por imagen , Mandíbula , Maxilar , Lengua , Embrión de Mamíferos
8.
Cells Tissues Organs ; 211(1): 1-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34438405

RESUMEN

Laryngeal and tracheobronchial cartilages are present as unique U-shaped forms around the respiratory tract and contribute to the formation of rigid structures required for the airway. Certain discrepancies still exist concerning cartilage formation in humans. To visualize the accurate timeline of cartilage formation, tracheobronchial and laryngeal cartilages were 3D reconstructed based on serial tissue sections during the embryonic period (Carnegie stage [CS] 18-23) and early fetal period (crown rump length [CRL] = 35-45 mm). The developmental phases of the cartilage were estimated by histological studies, which were performed on the reconstructed tissue sections. The hyoid greater horns were recognizable at CS18 (phase 2). Fusion of 2 chondrification centers in the mid-sagittal region was observed at CS19 in the hyoid bone, at CS20 in the cricoid cartilage, and in the specimen with CRL 39 mm in the thyroid cartilage. Phase 3 differentiation was observed at the median part of the hyoid body at CS19, which was the earliest among all other laryngeal and tracheobronchial cartilages. Most of the laryngeal cartilages were in phase 3 differentiation at CS22 and in phase 4 differentiation at CS23. The U-shaped tracheobronchial cartilages with phase 2 differentiation covered the entire extrapulmonary region at CS20. Phase 3 differentiation started on the median section and propagates laterally at CS21. The tracheobronchial cartilages may form simultaneously during the embryonic period at CS22-23 and early fetal periods, similar to adults in number and distribution. The spatial propagation of the tracheal cartilage differentiation provided in the present study indicates that cartilage differentiation may have propagated differently on phase 2 and phase 3. This study demonstrates a comprehensible timeline of cartilage formation. Such detailed information of the timeline of cartilage formation would be useful to improve our understanding of the development and pathophysiology of congenital airway anomalies.


Asunto(s)
Cartílago , Condrogénesis , Animales , Humanos
9.
J Anat ; 239(5): 1039-1049, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34142368

RESUMEN

The cortical plate (CP) first appears at seven postconceptional weeks (pcw), when it splits the preexisting preplate into two layers, the marginal zone and the presubplate (pSP). Although three-dimensional (3D) analysis using fetal magnetic resonance imaging and two-dimensional tissue observations have been reported, there have been no studies analyzing the early development of the layer structure corresponding to the pSP stage in 3D. Here, we reconstructed 3-D models of the brain with a focus on the cortical layers in pSP stage. To achieve this, we digitized serial tissue sections of embryos between CS20 and CS23 from the Kyoto Collection (n = 7, approximately 7-8.5 pcw), and specimens at early fetal phase from the Blechschmidt Collection (n = 2, approximately 9.5-12 pcw, crown rump length [CRL] 39 and 64 mm). We observed tissue sections and 3D images and performed quantitative analysis of the thickness, surface area, and volume. Because the boundary between pSP and the intermediate zone (IZ) could not be distinguished in hematoxylin and eosin-stained sections, the two layers were analyzed together as a single layer in this study. The histology of the layers was observed from CS21 and became distinct at CS22. Subsequently, we observed the 3-D models; pSP-IZ was present in a midlateral region of the cerebral wall at CS21, and an expansion centered around this region was observed after CS22. We observed it over the entire cerebral hemisphere at early fetal phase (CRL 39 mm). The thickness of pSP-IZ was visible in 3D and was greater in the midlateral region. At the end of the pSP stage (CRL 64 mm), the thick region expanded to lateral, superior, and posterior regions around the primordium of the insula. While, the region near the basal ganglia was not included in the thickest 10% of the pSP-IZ area. Middle cerebral artery was found in the midlateral region of the cerebral wall, near the area where pSP-IZ was observed. Feature of layer structure growth was revealed by quantitative assessment as thickness, surface area, and volume. The maximum thickness value of pSP-IZ and CP increased significantly according to CRL, whereas the median value increased slightly. The layer structure appeared to grow and spread thin, rather than thickening during early development, which is characteristic during pSP stages. The surface area of the cerebral total tissue, CP, and pSP-IZ increased in proportion to the square of CRL. The surface area of CP and pSP-IZ approached that of the total tissue at the end of the pSP stage. Volume of each layer increased in proportion to the cube of CRL. pSP-IZ and CP constituted over 50% of the total tissue in volume at the end of the pSP stages. We could visualize the growth of pSP-IZ in 3D and quantify it during pSP stage. Our approach allowed us to observe the process of rapid expansion of pSP-IZ from the midlateral regions of the cerebral wall, which subsequently becomes the insula.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Desarrollo Embrionario , Feto , Humanos , Imagenología Tridimensional
10.
J Anat ; 238(2): 455-466, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32888205

RESUMEN

The two major components of the metanephros, the urinary collecting system (UCS) and nephron, have different developmental courses. Nephron numbers vary widely between species and individuals and are determined during fetal development. Furthermore, the development of nascent nephrons may contribute to the expansion of the proximal part of the UCS. This study investigated the distribution of nascent nephrons and their interrelationship with UCS branches during human embryogenesis. We obtained samples from 31 human embryos between Carnegie stages (CSs) 19 and 23 from the Kyoto Collection at the Congenital Anomaly Research Center of Kyoto University in Japan. Serial histological sections of the metanephros with the UCS were digitalized and computationally reconstructed for morphological and quantitative analyses. The three-dimensional (3D) coordinates for the positions of all UCS branch points, end points, attachment points to nascent nephrons (APs), and renal corpuscles (RCs) were recorded and related to the developmental phase. Phases were categorized from phase 1 to phase 5 according to the histological analysis. The UCS branching continued until RCs first appeared (at CS19). End branches with attached nascent nephrons (EB-AP[+]) were observed after CS19 during the fifth generation or higher during the embryonic period. The range of end branch and EB-AP(+) generation numbers was broad, and the number of RCs increased with the embryonic stage, reaching 273.8 ± 104.2 at CS23. The number of RCs connected to the UCS exceeded the number not connected to the UCS by CS23. The 3D reconstructions revealed RCs to be distributed around end branches, close to the surface of the metanephros. The RCs connected to the UCS were located away from the surface. The APs remained near the end point, whereas connecting ducts that become renal tubules were found to elongate with maturation of the RCs. Nascent nephrons in RC phases 3-5 were preferentially attached to the end branches at CS22 and CS23. The mean generation number of EB-AP(-) was higher than that of EB-AP(+) in 19 of 22 metanephros and was statistically significant for eight metanephros at CS22 and CS23. The ratio of the deviated branching pattern was almost constant (29%). The ratio of the even branching pattern with EB-AP(+) and EB-AP(+) to the total even branching pattern increased with CS (9.2% at CS21, 19.2% at CS22, and 45.4% at CS23). Our data suggest the following: EB-AP(+) may not branch further at the tip (i.e., by tip splitting), but branching beneath the AP (lateral branching) continues throughout the embryonic stages. Our study provides valuable data that can further the understanding of the interactions between the UCS and nascent nephrons during human embryogenesis.


Asunto(s)
Nefronas/embriología , Desarrollo Embrionario , Humanos
11.
J Anat ; 239(2): 498-516, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33754346

RESUMEN

Morphometric analyses in the early foetal phase (9-13 postconceptional week) are critical for evaluating normal brain growth. In this study, we assessed sequential morphological and morphometric changes in the foetal brain during this period using high-resolution T1-weighted magnetic resonance imaging (MRI) scans from 21 samples preserved at Kyoto University. MRI sectional views (coronal, mid-sagittal, and horizontal sections) and 3D reconstructions of the whole brain revealed sequential changes in its external morphology and internal structures. The cerebrum's gross external view, lateral ventricle and choroid plexus, cerebral wall, basal ganglia and thalamus, and corpus callosum were assessed. The development of the cerebral cortex, white matter microstructure, and basal ganglia can be well-characterized using MRI scans. The insula became apparent and deeply impressed as brain growth progressed. A thick, densely packed cellular ventricular/subventricular zone and ganglionic eminence became apparent at high signal intensity. We detected the emergence of important landmarks which may be candidates in the subdivision processes during the early foetal period; the corpus callosum was first detected in the sample with crown-rump length (CRL) 62 mm. A primary sulcus on the medial part of the cortex (cingulate sulcus) was observed in the sample with CRL 114 mm. In the cerebellum, the hemispheres, posterolateral fissure, union of the cerebellar halves, and definition of the vermis were observed in the sample with CRL 43.5 mm, alongside the appearance of a primary fissure in the sample with CRL 56 mm and the prepyramidal fissure in the sample with CRL 75 mm. The volumetric, linear, and angle measurements revealed the comprehensive and regional development, growth, and differentiation of brain structures during the early foetal phase. The early foetal period was neither morphologically nor morphometrically uniform. The cerebral proportion (length/height) and the angle of cerebrum to the standard line at the lateral view of the cerebrum, which may reflect the growth and C-shape formation of the cerebrum, may be a candidate for subdividing the early foetal period. Future precise analyses must establish a staging system for the brain during the early foetal period. This study provides insights into brain structure, allowing for a correlation with functional maturation and facilitating the early detection of brain damage and abnormal development.


Asunto(s)
Encéfalo/embriología , Feto/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética
12.
J Anat ; 237(2): 311-322, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285469

RESUMEN

A classical study has revealed the general growth of the bronchial tree and its variations up to Carnegie stage (CS) 19. In the present study, we extended the morphological analysis CS by CS until the end of the embryonic period (CS23). A total of 48 samples between CS15 and CS23 belonging to the Kyoto Collection were used to acquire imaging data by performing phase-contrast X-ray computed tomography. Three-dimensionally reconstructed bronchial trees revealed the timeline of morphogenesis during the embryonic period. Structures of the trachea and lobar bronchus showed no individual difference during the analyzed stages. The right superior lobar bronchus was formed after the generation of both the right middle lobar bronchus and the left superior lobar bronchus. The speed of formation of the segmental bronchi, sub-segmental bronchi, and further generation seemed to vary among individual samples. The distribution of the end-branch generation among five lobes was significantly different. The median branching generation value in the right middle lobe was significantly low compared with that of the other four lobes, whereas that of the right inferior lobe was significantly larger than that of both the right and left superior lobes. Variations found between CS20 and CS23 were all described in the human adult lung, indicating that variation in the bronchial tree may well arise during the embryonic period and continue throughout life. The data provided may contribute to a better understanding of bronchial tree formation during the human embryonic period.


Asunto(s)
Bronquios/embriología , Pulmón/embriología , Tráquea/embriología , Bronquios/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Tráquea/diagnóstico por imagen
13.
J Anat ; 237(1): 166-175, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064626

RESUMEN

The omental bursa (OB) is a complex upper abdominal structure in adults. Its morphological complexity stems from embryonic development. Approximately 200 years ago, the first theory regarding OB development was reported, describing that the OB developed from changes in the position of the stomach and its dorsal mesentery. Thereafter, the second theory reported that the OB originated from three recesses: the right pneumato-enteric recess (rPER), hepato-enteric recess (HER), and pancreatico-enteric recess (PaER). However, the first theory, focusing on the rotation of the stomach, is still described in certain modern embryology textbooks. These two coexisting embryological theories deter the understanding of the anatomical complexity of the OB. This study aimed to unify these two theories into realistic illustrations. Approximately 10 samples per stage among Carnegie stage (CS) 13 and CS21 were microscopically observed and histological serial sections of the representative samples were aligned using the new automatic alignment method. The aligned images were segmented computationally and reconstructed into 3D models. The rPER and the HER encompassed the right half circumference of the esophagus and the stomach at CS13 and CS14, the PaER spread dorsal to the stomach and formed a discoid shape at CS15 and CS16, the infracardiac bursa (ICB) was separated by the diaphragm at CS17 and CS18, and the fourth recess, which we called the greater omental recess (GOR), extended caudally from the PaER among CS19 and CS21. The present results indicate that the fourth recess is also the origin of the OB. These two theories over 200 years can be generally unified into one embryological description indicating a new recess as the origin of the OB.


Asunto(s)
Desarrollo Embrionario/fisiología , Morfogénesis/fisiología , Cavidad Peritoneal/embriología , Embrión de Mamíferos , Humanos , Imagenología Tridimensional , Cavidad Peritoneal/diagnóstico por imagen
14.
Dev Dyn ; 248(12): 1257-1263, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31454117

RESUMEN

BACKGROUND: We aimed to analyze the morphogenesis of all ribs from 1st to 12th rib pairs plus vertebrae to compare their differences and features according to the position along the cranial-caudal axis during the human embryonic period. RESULTS: Rib pair formation was analyzed using high-resolution digitalized imaging data (n = 29) between Carnegie stage (CS) 18 and CS23 (corresponding to ED13-14 in mouse; HH29-35 in chick). A total of 348 rib pairs, from 1st to 12th rib pairs of each sample were subjected to Procrustes and principal component (PC) analyses. PC1 and PC2 accounted for 76.3% and 16.4% (total 92.7%) of the total variance, respectively, indicating that two components mainly accounted for the change in shape. The distribution of PC1 and PC2 values for each rib showed a "fishhook-like shape" upon fitting to a quartic equation. PC1 and PC2 value position for each rib pair moved along the fitted curve according to the development. Thus, the change in PC1 and PC2 could be expressed by a single parameter using a fitted curve as a linear scale for shape. CONCLUSION: Human embryonic ribs all progress through common morphological forms irrespective of their position on the axis.


Asunto(s)
Costillas/embriología , Costillas/patología , Columna Vertebral/embriología , Embrión de Mamíferos , Edad Gestacional , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Tamaño de los Órganos , Costillas/anatomía & histología , Columna Vertebral/anatomía & histología , Columna Vertebral/patología , Tomografía Computarizada por Rayos X/métodos
15.
J Anat ; 234(4): 456-464, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30681143

RESUMEN

The intestine elongates during the early fetal period, herniates into the extraembryonic coelom, and subsequently returns to the abdominal coelom. The manner of herniation is well-known; however, the process by which the intestinal loop returns to the abdomen is not clear. Thus, the present study was designed to document and measure intestinal movements in the early fetal period in three dimensions to elucidate the intestinal loop return process. Magnetic resonance images from human fetuses whose intestinal loops herniated (herniated phase; n = 5) while returning to the abdominal coelom [transition phase; n = 3, crown-rump length (CRL)] 37, 41, and 43 mm] and those whose intestinal loops returned to the abdominal coelom normally (return phase; n = 12) were selected from the Kyoto Collection. Intestinal return began from proximal to distal in samples with CRL of 37 mm. Only the ileum ends were observed in the extraembryonic coelom in samples with CRLs of 41 and 43 mm, whereas the ceca were already located in the abdominal coeloms. The entire intestinal tract had returned to the abdominal coelom in samples with CRL > 43 mm. The intestinal length increased almost linearly with fetal growth irrespective of the phase (R2  = 0.90). The ratio of the intestinal length in the extraembryonic coelom to the entire intestinal length was maximal in samples with CRLs of 32 mm (77%). This ratio rapidly decreased in three of the samples that were in the transition phase. The abdominal volumes increased exponentially (to the third power) during development. The intestinal volumes accounted for 33-41% of the abdominal volumes among samples in the herniated phase. The proportion of the intestine in the abdominal cavity increased, whereas that in the liver decreased, both without any break or plateau. The amount of space available for the intestine by the end of the transition phase was approximately 200 mm3 . The amount of space available for the intestine in the abdominal coelom appeared to be sufficient at the beginning of the return phase in samples with CRLs of approximately 43 mm compared with the maximum intestinal volume available for the extraembryonic coelom in the herniated phase, which was 25.8 mm3 in samples with CRLs of 32 mm. A rapid increase in the space available for the intestine in the abdominal coelom that exceeded the intestinal volume in the extraembryonic coelom generated an inward force, leading to a 'sucked back' mechanism acting as the driving force. The height of the hernia tip increased to 8.9 mm at a maximum fetal CRL of 37 mm. The height of the umbilical ring increased in a stepwise manner between the transition and return phases and its height in the return phase was comparable to or higher than that of the hernia tip during the herniation phase. We surmised that the space was generated in the aforementioned manner to accommodate the herniated portion of the intestine, much like the intestine wrapping into the abdominal coelom as the height of the umbilical ring increased.


Asunto(s)
Desarrollo Fetal , Hernia Umbilical/embriología , Intestinos/embriología , Abdomen/embriología , Femenino , Feto , Humanos , Imagen por Resonancia Magnética
16.
J Anat ; 235(1): 88-95, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30977530

RESUMEN

In embryology, the infracardiac bursa (ICB) is a well-known derivative separated from the omental bursa. During surgeries around the esophagogastric junction (EGJ), surgeons often encounter a closed space considered to be equivalent to the ICB, but the macroscopic anatomy in adults is hardly known. This study aimed to revisit the ICB using multimodal methods to show its development from the embryonic to adult stage and clarify its persistence and topographic anatomy. Histological sections of 79 embryos from Carnegie stage (CS) 16 to 23 and magnetic resonance (MR) images of 39 fetuses were examined to study the embryological development of the ICB. Horizontal sections around the EGJ obtained from three adult cadavers were examined to determine the topographic anatomy and histology of the ICB. Further, 32 laparoscopic surgical videos before (n = 16) and after (n = 16) the start of this study were reviewed to confirm its remaining rate and topographic anatomy in surgery. The ICB was formed in 1 out of 10 CS17 samples, and in 8 out of 10 CS18 samples. Further, it was observed in all CS19-23 except one CS23 sample and in 25 (64%) out of 39 fetus samples. Three-dimensional reconstructed MR images of fetuses revealed that the ICB was located at the right alongside the esophagus and the cranial side of the diaphragmatic crus. In one adult cadaver, the caudal end of the ICB arose from the level of the esophageal hiatus and the cranial end reached up to the level of the pericardium. The inner surface cells of the space consisted of the mesothelium. In laparoscopic surgery, the ICB was identified in only 11 (69%) out of 16 surgeries before. However, subsequently we were able to identify the ICB reproducibly in 15 (94%) out of 16 surgeries. Thus, the ICB is the structure commonly remaining in almost all adults as a closed space located at the right alongside the esophagus and the cranial side of the diaphragmatic crus. It may be available as a useful landmark in surgery of the EGJ.


Asunto(s)
Unión Esofagogástrica , Esófago/anatomía & histología , Anatomía Regional/métodos , Cadáver , Endoscopía , Unión Esofagogástrica/anatomía & histología , Unión Esofagogástrica/diagnóstico por imagen , Unión Esofagogástrica/cirugía , Femenino , Feto/anatomía & histología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
17.
Cleft Palate Craniofac J ; 56(8): 1026-1037, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30773047

RESUMEN

BACKGROUND: Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE: To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS: Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS: The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS: The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.


Asunto(s)
Craneosinostosis , Cara , Desarrollo Fetal , Maxilar , Desarrollo Maxilofacial , Cara/embriología , Femenino , Humanos , Maxilar/embriología , Maxilar/crecimiento & desarrollo , Morfogénesis , Embarazo , Cigoma
18.
J Anat ; 232(5): 806-811, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29315541

RESUMEN

Although the human tail is completely absent at birth, the embryonic tail is formed just as in other tailed amniotes. Since all morphological variations are created from variations in developmental processes, elucidation of the tail reduction process during embryonic development may be necessary to clarify the human evolutionary process. The tail has also been of great interest to the medical community. The congenital anomaly referred to as 'human tail', i.e. the occurrence of a tail-like structure, has been reported and was thought to represent a vestige of the embryonic tail; however, this hypothesis has not been verified. Accordingly, in this study, we aimed to establish a new method to visualize all somites in an embryo. We used sagittal-sectioned embryos from Carnegie Stage (CS) 13 to CS23. All samples were obtained from the Congenital Anomaly Research Center, Kyoto University, Japan. Combining photomicroscopy and three-dimensional reconstruction, we clearly visualized and labeled all somites. We found that the number of somites peaked at CS16 and dramatically decreased by approximately five somites. Tail reduction with a decrease in somites has also been observed in other short-tailed amniotes; thus, this result suggested the possibility that there is a common mechanism for morphogenesis of short tails in amniote species. Additionally, our findings provided important insights into the cause of the congenital anomaly known as 'human tail'.


Asunto(s)
Desarrollo Embrionario , Somitos/crecimiento & desarrollo , Cola (estructura animal)/diagnóstico por imagen , Animales , Humanos , Imagenología Tridimensional , Somitos/diagnóstico por imagen
19.
Prenat Diagn ; 37(9): 907-915, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28675493

RESUMEN

OBJECTIVES: Disturbance of the development of the nasal septum in the early prenatal period causes congenital facial anomalies characterized by a flat nose and defects of the anterior nasal spine (ANS), such as Binder phenotype. The present research aimed to assess the development of the nasal septum and the ANS with growth in the early prenatal period. METHODS: Magnetic resonance images were obtained from 56 specimens. Mid-sagittal images were analyzed by using geometric morphometrics for the development of the nasal septum, and angle analysis was performed for the development of the ANS. Additionally, we calculated and visualized the ontogenetic allometry of the nasal septum. RESULTS: Our results showed that the nasal septum changed shape in the anteroposterior direction in smaller specimens, while it maintained an almost isometric shape in larger specimens. Furthermore, mathematical evidence revealed that the maturation periods of the shapes of the ANS and the nasal septum were around 12 and 14 weeks of gestation, respectively. CONCLUSION: The anteroposterior development of the nasal septum is specific until 14 weeks of gestation, and it is important for nasal protrusion and the development of the ANS. Therefore, the disturbance of such development could induce low nasal deformity, including Binder phenotype. © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Imagen por Resonancia Magnética , Tabique Nasal/embriología , Nariz/anomalías , Femenino , Edad Gestacional , Humanos , Fenotipo , Embarazo
20.
Prenat Diagn ; 36(4): 338-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26850570

RESUMEN

OBJECTIVES: The present study investigated linear, area, and volume measurements of human brain samples according to Carnegie stages (CS) in an attempt to select suitable morphometric features that reflect embryonic development. METHODS: Using magnetic resonance imaging, we measured seven linear segments, three separate areas, and three regional volumes in 101 samples between CS13 and 23. Brain volume was determined via manual segmentation of the magnetic resonance image, whereby a formula was generated to estimate the volume of each linear measurement. RESULTS: All parameters correlated with crown-rump length. Bitemporal length and mesencephalic height increased linearly according to the CS, and a high correlation between bitemporal length and both whole-brain (r = 0.98) and prosencephalon (r = 0.99) volumes was found when brain cavity volume was excluded. CONCLUSION: Morphometric data related to human embryonic stages are valuable for correcting and comparing sonographic data. The present approach may contribute to improvements in prenatal diagnostics by enabling the selection of more suitable measurements during early embryonic stages. © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Encéfalo/embriología , Desarrollo Embrionario , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA