Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166582, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634734

RESUMEN

Aerosol vertical distribution plays a crucial role in cloud development and thus precipitation since both aerosol indirect and semi-direct effects significantly depend on the relative position of aerosol layer in reference to cloud, but its precise influence on cloud remains unclear. In this study, we integrated multi-year Raman Lidar measurements of aerosol vertical profiles from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) facility with available Value-Added Products of cloud features to characterize aerosol vertical distributions and their impacts on warm clouds over the continental and marine ARM atmospheric observatories, i.e., Southern Great Plains (SGP) and Eastern North Atlantic (ENA). A unimodal seasonal distribution of aerosol optical depths (AODs) with a peak in summer is found at upper boundary layer over SGP, while a bimodal distribution is observed at ENA for the AODs at lower levels with a major winter-spring maximum. The diurnal mean of upper-level AOD at SGP shows a maximum in the early evening. According to the relative positions of aerosol layers to clouds we further identify three primary types of aerosol vertical distribution, including Random, Decreasing, and Bottom. It is found that the impacts of aerosols on cloud may or may not vary with aerosol vertical distribution depending on environmental conditions, as reflected by the wide variations of the relations between AOD and cloud properties. For example, as AOD increases, the liquid water paths (LWPs) tend to be reduced at SGP but enhanced at ENA. The relations of cloud droplet effective radius with AOD largely depend on aerosol vertical distributions, particularly showing positive values in the Random type under low-LWP condition (<50 g m-2). The distinct features of aerosol-cloud interactions in relation to aerosol vertical distribution are likely attributed to the continental-marine contrast in thermodynamic environments and aerosol conditions between SGP and ENA.

2.
Appl Opt ; 49(20): 3990-6, 2010 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-20648178

RESUMEN

We have developed a hit-and-miss Monte Carlo geometric ray-tracing program to compute the scattering phase matrix for concentrically stratified spheres. Using typical refractive indices for water and aerosols in the calculations, numerous rainbow features appear in the phase matrix that deviate from the results calculated from homogeneous spheres. In the context of geometric ray tracing, rainbows and glory are identified by means of their ray paths, which provide physical explanation for the features produced by the "exact" Lorenz-Mie theory. The computed results for the phase matrix, the single-scattering albedo, and the asymmetry factor for a size parameter of approximately 600 compared closely with those evaluated from the "exact" theory.

3.
Biochem Biophys Res Commun ; 379(3): 765-70, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19124002

RESUMEN

During T cell development in the thymus, autoreactive T cells are deleted through a mechanism that is actively supported by medullary epithelial cells. These epithelial cells possess particular transcription factors including autoimmune regulator (AIRE), which is responsible for regulating expression of self-antigens, as well as p63, a p53-like molecule. Here we present evidence suggesting interaction of AIRE with p63 through a SAND domain and a transactivation domain, respectively. Interestingly an AIRE molecule with a mutated SAND domain of G228W, whose genetic alteration is inherited in an autosomal dominant manner, could not establish a complex with p63 as indicated by immunoprecipitation and molecular modeling analyses. Further in vitro study indicated that the G228W mutation led to downregulation of the transcription levels of CIITA and, accordingly, the cell surface expression of HLA class II molecules in thymic epithelial cells with p63. This indicates novel involvement of AIRE and p63 in the regulation of HLA class II, and suggests that defects in the AIRE-p63 interaction may lead to malfunction of HLA-based selection of self-reactive helper CD4(+) T cells in the thymus.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/biosíntesis , Timo/inmunología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Preescolar , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Mapeo de Interacción de Proteínas , Células del Estroma/inmunología , Timo/citología , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteína AIRE
4.
Appl Opt ; 45(26): 6849-59, 2006 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16926921

RESUMEN

A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

5.
Appl Opt ; 41(27): 5744-54, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12269574

RESUMEN

We have developed a two-dimensional (2D) model for inhomogeneous cirrus clouds in plane-parallel and spherical geometries for the analysis of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective ice-crystal size fields for cirrus clouds can be determined from a combination of the remote sensing of cirrus clouds by use of the Advanced Very High Resolution Radiometer on board National Oceanic and Atmospheric Administration satellites and the vertical profiling of ice-crystal size distributions available from limited measurements. We demonstrate that satellite remote sensing of the position and the composition of high cirrus can be incorporated directly in the computer model developed for the transmission and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission, forward scattering, and backscattering are analyzed carefully with respect to aircraft height, cirrus cloud optical depth, and ice-crystal size and orientation. Uncertainty in laser transmission that is due to errors in the retrieved ice-crystal size is negligible. But uncertainty of the order of 2% can be produced if the retrieved optical depth has errors of +/-0.05. With both the aircraft and the target near the cloud top, the direct transmission decreases, owing to the propagation of the laser beam through the curved portion of the cloud top. This effect becomes more pronounced as the horizontal distance between the aircraft and the target increases.

6.
Appl Opt ; 42(36): 7202-14, 2003 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-14717300

RESUMEN

We describe sensitivity studies on the remote sensing of cirrus cloud optical thickness and effective particle size using the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite 0.67-, 1.24-, 1.61-, and 2.25-microm reflectances and thermal IR 3.70- and 10.76-microm radiances. To investigate the accuracy and precision of the solar and IR retrieval methods subject to instrument noise and uncertainties in environmental parameters, we carried out signal-to-noise ratio tests as well as the error budget study, where we used the University of California at Los Angeles line-by-line equivalent radiative transfer model to generate radiance tables for synthetic retrievals. The methodology and results of these error analyses are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA