Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Growth Differ ; 26(3): 295-302, 1984.
Artículo en Inglés | MEDLINE | ID: mdl-37282137

RESUMEN

The length of chromosomes in the presumptive ectoderms of Cynops embryos was measured at nine successive cell divisions from the 6th (cleavage stage) to the 14th (gastrula stage). Up to the 10th cell division (cleavage stage) the chromosome length remained constant. At the 11th cell division the chromosomes began to shorten and continued to shorten at every cell division up to the 14th cell division. The degree of shortening and the mode of variation in length corresponded to the respective developmental stages of cleavage, blastula and gastrula. During those periods when chromosomes became shortened, some fine C-bands of the paracentromeric region found in earlier stages fused together. The chromatin of interphase nuclei also showed considerable changes during chromosome shortening. Besides the size reduction of interphase nuclei, the number of C-band granules in an interphase nucleus decreased in parallel with chromosome shortening and fusion of C-bands in mitotic chromosome.

2.
Dev Growth Differ ; 33(3): 277-282, 1991 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37281543

RESUMEN

Two-dimensional gel electrophoresis was used to analyze protein synthesis in relation to neural and epidermal differentiation in Cynops pyrrhogaster embryo. Various regions of embryos at different developmental stages, from late morula to early neurula stages, were excised, radiolabelled with 35 S-methionine, and the pattern of protein synthesis were compared. The following four types of protein spots were observed: (1) six proteins synthesized characteristically in the epidermal region of the embryo after gastrulation, (2) two proteins synthesized in both epidermal and endodermal regions, but not in other regions, after gastrulation, (3) a protein first detected at early blastula stage, of which expression was nearly constant in presumptive epidermis region but declined in the other regions, (4) the candidate for neural plate specific protein synthesized at a very high level in ectoderm explants treated with concanavalin A, a substance which evokes neural induction.

3.
Dev Growth Differ ; 27(4): 419-433, 1985.
Artículo en Inglés | MEDLINE | ID: mdl-37280834

RESUMEN

The organization center of Cynops pyrrhogaster was divided into Parts 1, 2 and 3 of equal size (0.3×0.4 mm2 ) with presumptive fates as pharyngeal, pharyngeal+prechordal+trunk notochord, and trunk-tail notochord, respectively. Movements and changes in size and shape of each part were followed through gastrulation. Differentiation tendencies of each part were examined under three conditions: I, isolated; II, sandwiched with presumptive ectoderm; 111, sandwiched with presumptive ectoderm after preculture in isolation for various times. In I, Parts 2 and 3 differentiated into dorsal mesoderm. In II, each part induced dorsal mesoderm and neural tissues, the frequency being highest in Part 2 and lowest in Part 3. In III, Parts 1 and 2 realized their presumptive fates, through changes in inductive capacities from trunk-tail to head. This change progressed rapidly in Part 1, and slowly in Part 2. Part 3 required induction by neighbouring Part 2 to realize its presumptive fate. Changes of inductive capacity of Parts 1 and 2 respectively, were chronologically similar in normal development and in preculture experiments. Lastly, the primary presumptive pharyngeal zone at blastula was proposed to act as an initiator of the organization center, its programmed information being transmitted to Part 2, and then to Part 3.

4.
Dev Growth Differ ; 32(2): 117-123, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37281684

RESUMEN

Con A induced dorsal differentiation in the ventral mesoderm of Cynops gastrula embryo. This process apparently requires a certain amount of Con A to be internalized as supported by the following evidence: 1) Oligomannose-type oligosaccharide, a potent inhibitor of Con A, considerably inhibited dorsalization of ventral mesoderm by Con A. The incorporation of 125 I-Con A into the ventral mesoderm was greatly inhibited by this sugar. 2) Sepharose-immobilized Con A did not dorsalize the ventral mesoderm. Con A-induced dorsalization was found to be concentration-dependent. Microautoradiograms of 125 I-Con A-treated ventral mesoderm suggest that the target site (some receptor molecules) of Con A exists inside the cell. Con A is the first pure substance reported to mimic the two properties of the organizer-neural induction of the competent ectoderm and dorsalization of the ventral mesoderm. In neural induction, Con A acts on the cell surface, while Con A apparently needs to be internalized to trigger dorsal differentiation. Interestingly, Con A-dorsalized ventral mesoderm acquired the neural inducing function of the organizer within the early phase of dorsalization.

5.
Wilehm Roux Arch Dev Biol ; 190(6): 313-319, 1981 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28305290

RESUMEN

Scanning electron microscopic studies revealed that Concanavalin A (ConA) induces characteristic changes of the cell surface and the cell architecture of the presumptive ectoderm associated with differentiation into neural tissues. In Con A-treated cells, the filopodia with which cells were connected to each other disappeared from the interior (blastocoelic) surface and the cellular adhesivity decreased significantly. Thereafter, the cells underwent from those of the control explants. After cultivation for 60 h, a certain pattern of cell arrangement, which resembled the architecture of neural tissues, was observed among randomly arranged cells in the explants treated with Con A. The morphological changes specifically observed in Con A-treated explants were different from those found in explants treated with succinyl Con A (S-Con A) orDolichos biflorus agglutinin (DBA), which is unable to induce formation of the neural tissues. The molecular organization of the plasma membrane appears to be important in the mechanism of neural induction.

6.
Wilehm Roux Arch Dev Biol ; 190(2): 92-96, 1981 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28305357

RESUMEN

Lectins were used as probes to investigate the mechanism of embryonic induction. Concanavalin (Con A) and gorse agglutinin out of 7 species of lectins tested were found to have strong neural-inducing effect on the presumptive ectoderm of newt gastrulae. Their effects were abolished by the addition of α-methyl-D-mannoside and α-L-fucose, respectively. Succinyl-Con A had a weak inducing activity in comparison to Con A. Autoradiography of3H-Con A-treated explants revealed that Con A bound to the inner surface, but not to the outer surface of ectoderm and was successively incorporated into cytoplasm.3H-Thymidine incorporation was lower in the first half and higher in the second half of the 60 h cultivation period in Con A-treated explants as compared to controls.Con A-Sepharose had a strong inductive effect. This suggests that neural induction is caused through Con A binding to the plasma membrane, but not through incorporation into the cytoplasm of the ectoderm cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA