Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 80(6): 996-1012.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33147438

RESUMEN

Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.


Asunto(s)
Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Formaldehído/sangre , Leucemia/genética , Adolescente , Aldehídos/sangre , Animales , Niño , Preescolar , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Formaldehído/toxicidad , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Leucemia/sangre , Leucemia/patología , Masculino , Ratones , Mutación/genética , Especificidad por Sustrato
2.
Mol Cell ; 71(1): 25-41.e6, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29937342

RESUMEN

Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks.


Asunto(s)
ADN/biosíntesis , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Células A549 , ADN/genética , Replicación del ADN/fisiología , Epigénesis Genética/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Chaperonas Moleculares/genética , Nucleosomas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Mol Cell ; 66(5): 622-634.e8, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575658

RESUMEN

RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype.


Asunto(s)
Cromatina/enzimología , Daño del ADN , ADN/metabolismo , Anemia de Fanconi/enzimología , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Proteína de Replicación A/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/efectos de la radiación , ADN/genética , Anemia de Fanconi/genética , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Mitomicina/farmacología , Mutación , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Interferencia de ARN , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Reparación del ADN por Recombinación/efectos de la radiación , Proteína de Replicación A/genética , Transfección , Ubiquitina-Proteína Ligasas/genética , Proteína que Contiene Valosina
4.
Genes Cells ; 28(9): 642-645, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341149

RESUMEN

Ataxia-telangiectasia (A-T) is a rare devastating hereditary condition, which affects multiple organ systems including cerebellar motor function as well as DNA repair, resulting in a higher incidence of cancer and immunodeficiency. The genetic defect in A-T lies in ATM kinase, which is activated by DNA damage and regulates a plethora of substrates including the p53 tumor suppressor. We have organized an international meeting "The 19th Ataxia-Telangiectasia Workshop 2023 (ATW2023)" with support from the Molecular Biology Society of Japan (MBSJ) and other funders. Here, we report that ATW2023 was successfully held in Kyoto from March 2nd to 5th, 2023 with more than 150 participants traveling from all over the world, despite the still smoldering COVID-19 pandemic. In this meeting report, we will briefly describe the highlights of the meeting and would like to express our gratitude to the MBSJ for the financial support.


Asunto(s)
Ataxia Telangiectasia , COVID-19 , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada , Pandemias , Daño del ADN , Reparación del ADN , Proteínas de Ciclo Celular/metabolismo
5.
Genes Cells ; 28(9): 663-673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37469008

RESUMEN

The SLFN11 gene participates in cell fate decision following cancer chemotherapy and encodes the N-terminal ribonuclease (RNase) domain and the C-terminal helicase/ATPase domain. How these domains contribute to the chemotherapeutic response remains controversial. Here, we expressed SLFN11 containing mutations in two critical residues required for RNase activity in SLFN11-/- cells. We found that this mutant was still able to suppress DNA damage tolerance, destabilized the stalled replication forks, and perturbed recruitment of the fork protector RAD51. In contrast, we confirmed that the helicase domain was essential to accelerate fork degradation. The fork degradation by the RNase mutant was dependent on both DNA2 and MRE11 nuclease, but not on MRE11's novel interactor FXR1. Collectively, these results supported the view that the RNase domain function is dispensable for SLFN11 to mediate cell fate decision during replication stress response.


Asunto(s)
Replicación del ADN , Ribonucleasas , Ribonucleasas/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Mutación , Daño del ADN
6.
Blood ; 137(3): 336-348, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32735670

RESUMEN

Fanconi anemia (FA) is a hereditary disorder caused by mutations in any 1 of 22 FA genes. The disease is characterized by hypersensitivity to interstrand crosslink (ICL) inducers such as mitomycin C (MMC). In addition to promoting ICL repair, FA proteins such as RAD51, BRCA2, or FANCD2 protect stalled replication forks from nucleolytic degradation during replication stress, which may have a profound impact on FA pathophysiology. Recent studies showed that expression of the putative DNA/RNA helicase SLFN11 in cancer cells correlates with cell death on chemotherapeutic treatment. However, the underlying mechanisms of SLFN11-mediated DNA damage sensitivity remain unclear. Because SLFN11 expression is high in hematopoietic stem cells, we hypothesized that SLFN11 depletion might ameliorate the phenotypes of FA cells. Here we report that SLFN11 knockdown in the FA patient-derived FANCD2-deficient PD20 cell line improved cell survival on treatment with ICL inducers. FANCD2-/-SLFN11-/- HAP1 cells also displayed phenotypic rescue, including reduced levels of MMC-induced chromosome breakage compared with FANCD2-/- cells. Importantly, we found that SLFN11 promotes extensive fork degradation in FANCD2-/- cells. The degradation process is mediated by the nucleases MRE11 or DNA2 and depends on the SLFN11 ATPase activity. This observation was accompanied by an increased RAD51 binding at stalled forks, consistent with the role of RAD51 antagonizing nuclease recruitment and subsequent fork degradation. Suppression of SLFN11 protects nascent DNA tracts even in wild-type cells. We conclude that SLFN11 destabilizes stalled replication forks, and this function may contribute to the attrition of hematopoietic stem cells in FA.


Asunto(s)
Replicación del ADN , Anemia de Fanconi/patología , Proteínas Nucleares/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Rotura Cromosómica , Reactivos de Enlaces Cruzados/farmacología , ADN Helicasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Modelos Biológicos , Mutación/genética , Fenotipo , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/metabolismo
7.
Blood ; 137(15): 2021-2032, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512438

RESUMEN

We have recently discovered Japanese children with a novel Fanconi anemia-like inherited bone marrow failure syndrome (IBMFS). This disorder is likely caused by the loss of a catabolic system directed toward endogenous formaldehyde due to biallelic variants in ADH5 combined with a heterozygous ALDH2*2 dominant-negative allele (rs671), which is associated with alcohol-induced Asian flushing. Phytohemagglutinin-stimulated lymphocytes from these patients displayed highly increased numbers of spontaneous sister chromatid exchanges (SCEs), reflecting homologous recombination repair of formaldehyde damage. Here, we report that, in contrast, patient-derived fibroblasts showed normal levels of SCEs, suggesting that different cell types or conditions generate various amounts of formaldehyde. To obtain insights about endogenous formaldehyde production and how defects in ADH5/ALDH2 affect human hematopoiesis, we constructed disease model cell lines, including induced pluripotent stem cells (iPSCs). We found that ADH5 is the primary defense against formaldehyde, and ALDH2 provides a backup. DNA repair capacity in the ADH5/ALDH2-deficient cell lines can be overwhelmed by exogenous low-dose formaldehyde, as indicated by higher levels of DNA damage than in FANCD2-deficient cells. Although ADH5/ALDH2-deficient cell lines were healthy and showed stable growth, disease model iPSCs displayed drastically defective cell expansion when stimulated into hematopoietic differentiation in vitro, displaying increased levels of DNA damage. The expansion defect was partially reversed by treatment with a new small molecule termed C1, which is an agonist of ALDH2, thus identifying a potential therapeutic strategy for the patients. We propose that hematopoiesis or lymphocyte blastogenesis may entail formaldehyde generation that necessitates elimination by ADH5/ALDH2 enzymes.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Anemia de Fanconi/genética , Células Madre Pluripotentes Inducidas/patología , Sistemas CRISPR-Cas , Línea Celular , Células Cultivadas , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Daño del ADN , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/patología , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación
8.
Mol Biol Rep ; 50(10): 8385-8395, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615925

RESUMEN

BACKGROUND: Fanconi anemia (FA) is a devastating hereditary disorder for which we desperately need a novel therapeutic strategy. It is caused by mutations in one of at least 22 genes in the FA pathway and is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. The FA pathway is required for the efficient repair of damaged DNA, including interstrand cross-links (ICL). Recent studies indicate formaldehyde as an ultimate endogenous cause of DNA damage in FA pathophysiology. Formaldehyde can form DNA adducts as well as ICLs by inducing covalent linkages between opposite strands of double-stranded DNA. METHODS AND RESULTS: In this study, we generated a disease model of FA in zebrafish by disrupting the ube2t or fancd2 gene, which resulted in a striking phenotype of female-to-male sex reversal. Since formaldehyde is detoxified from the body by alcohol dehydrogenase 5 (ADH5), we generated fancd2-/-/adh5-/- zebrafish. We observed a body size reduction and a lower number of mature spermatozoa than wild-type or single knockout zebrafish. To evaluate if increased activity in ADH5 can affect the FA phenotype, we overexpressed human ADH5 in fancd2-/- zebrafish. The progress of spermatogenesis seemed to be partially recovered due to ADH5 overexpression. CONCLUSIONS: Our results suggest potential utility of an ADH5 enzyme activator as a therapeutic measure for the clearance of formaldehyde and treatment of FA.


Asunto(s)
Anemia de Fanconi , Pez Cebra , Animales , Masculino , Humanos , Femenino , Pez Cebra/genética , Anemia de Fanconi/genética , Daño del ADN , Reparación del ADN , Fenotipo , Formaldehído
10.
Rinsho Ketsueki ; 64(7): 639-645, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37544724

RESUMEN

Fanconi anemia (FA), a hereditary bone marrow failure syndrome, has been suggested to be caused by a defect in DNA repair that removes endogenous DNA damage due to aldehydes. In seven Japanese children with aplastic anemia who clinically resembled FA, we identified biallelic variants of the ADH5 gene, encoding formaldehyde degrading enzyme, and a heterozygous ALDH2 variant (rs671). We conclude that the combined defects in ADH5/ALDH2 caused a new disorder now termed Aldehyde Degradation Deficiency Syndrome (ADDS). We suggest that this disease is caused by defective removal of formaldehyde produced by histone demethylation during hematopoietic cell differentiation. Therapeutic targeting of formaldehyde may reduce the hematopoietic deficits of FA as well as ADDS.


Asunto(s)
Anemia de Fanconi , Niño , Humanos , Anemia de Fanconi/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehídos/metabolismo , Formaldehído , Hematopoyesis/genética , Mecanismos de Defensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA