Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L84-L92, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699291

RESUMEN

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/diagnóstico , COVID-19/genética , Enfermedad Crítica , ADN Mitocondrial/genética , Humanos , Unidades de Cuidados Intensivos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/genética
2.
Crit Care Explor ; 4(7): e0720, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35782295

RESUMEN

Compare ICU outcomes and respiratory system mechanics in patients with and without acute kidney injury during invasive mechanical ventilation. DESIGNS: Retrospective cohort study. SETTINGS: ICUs of the University of California, San Diego, from January 1, 2014, to November 30, 2016. PATIENTS: Five groups of patients were compared based on the need for invasive mechanical ventilation, presence or absence of acute kidney injury per the Kidney Disease: Improving Global Outcomes criteria, and the temporal relationship between the development of acute kidney injury and initiation of invasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 9,704 patients were included and 4,484 (46%) required invasive mechanical ventilation; 2,009 patients (45%) had acute kidney injury while being treated with invasive mechanical ventilation, and the mortality rate for these patients was 22.4% compared with 5% in those treated with invasive mechanical ventilation without acute kidney injury (p < 0.01). Adjusted hazard of mortality accounting for baseline disease severity was 1.58 (95% CI, 1.22-2.03; p < 0.001]. Patients with acute kidney injury during invasive mechanical ventilation had a significant increase in total ventilator days and length of ICU stay with the same comparison (both p < 0.01). Acute kidney injury during mechanical ventilation was also associated with significantly higher plateau pressures, lower respiratory system compliance, and higher driving pressures (all p < 0.01). These differences remained significant in patients with net negative cumulative fluid balance. CONCLUSIONS: Acute kidney injury during invasive mechanical ventilation is associated with increased ICU mortality, increased ventilator days, increased length of ICU stay, and impaired respiratory system mechanics. These results emphasize the need for investigations of ventilatory strategies in the setting of acute kidney injury, as well as mechanistic studies of crosstalk between the lung and kidney in the critically ill.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA