Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 53(11): 6255-6263, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31074970

RESUMEN

Polyamide (PA) membranes comprise most of the reverse osmosis membranes currently used for desalination and water purification. However, their fouling mechanisms with natural organic matter (NOM) is still not completely understood. In this work, we studied three different types of PA membranes: a laboratory made PA, a commercial PA, and a multiwalled carbon nanotube (CNT-PA nanocomposite membrane during cross-flow measurements by NaCl solutions including NOM, humic acid (HA), or alginate, respectively). Molecular dynamic simulations were also used to understand the fouling process of NOM down to its molecular scale. Low molecular weight humic acid binds to the surface cavities on the PA structures that leads to irreversible adsorption induced by the high surface roughness. In addition, the larger alginate molecules show a different mechanism, due to their larger size and their ability to change shape from the globule type to the uncoiled state. Specifically, alginate molecules either bind through Ca2+ bridges or they uncoil and spread on the surface. This work shows that carbon nanotubes can help to decrease roughness and polymer mobility on the surfaces of the membranes at the molecular scale, which represents a novel method to design antifouling membranes.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Purificación del Agua , Membranas Artificiales , Nylons
2.
Nanoscale ; 12(38): 19628-19637, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32627791

RESUMEN

Reverse osmosis membranes of aromatic polyamide (PA) reinforced with a crystalline cellulose nanofiber (CNF) were synthesized and their desalination performance was studied. Comparison with plain PA membranes shows that the addition of CNF reduced the matrix mobility resulting in a molecularly stiffer membrane because of the attractive forces between the surface of the CNFs and the PA matrix. Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy results showed complex formation between the carboxy groups of the CNF surface and the m- phenylenediamine monomer in the CNF-PA composite. Molecular dynamics simulations showed that the CNF-PA had higher hydrophilicity which was key for the higher water permeability of the synthesized nanocomposite membrane. The CNF-PA reverse osmosis nanocomposite membranes also showed enhanced antifouling performance and improved chlorine resistance. Therefore, CNF shows great potential as a nanoreinforcing material towards the preparation of nanocomposite aromatic PA membranes with longer operation lifetime due to its antifouling and chlorine resistance properties.

3.
ACS Omega ; 3(6): 6047-6055, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458794

RESUMEN

The antiscaling properties of multiwalled carbon nanotube (MWCNT)-polyamide (PA) nanocomposite reverse-osmosis (RO) desalination membranes (MWCNT-PA membranes) were studied. An aqueous solution of calcium chloride (CaCl2) and sodium bicarbonate (NaHCO3) was used to precipitate in situ calcium carbonate (CaCO3) to emulate scaling. The MWCNT contents of the studied nanocomposite membranes prepared by interfacial polymerization ranged from 0 wt % (plain PA) to 25 wt %. The inorganic antiscaling performances were compared for the MWCNT-PA membranes to laboratory-made plain and commercial PA-based RO membranes. The scaling process on the membrane surface was monitored by fluorescence microscopy after labeling the scale with a fluorescent dye. The deposited scale on the MWCNT-PA membrane was less abundant and more easily detached by the shear stress under cross-flow compared to other membranes. Molecular dynamics simulations revealed that the attraction of Ca2+ ions was hindered by the interfacial water layer formed on the surface of the MWCNT-PA membrane. Together, our findings revealed that the observed outstanding antiscaling performance of MWCNT-PA membranes results from (i) a smooth surface morphology, (ii) a low surface charge, and (iii) the formation of an interfacial water layer. The MWCNT-PA membranes described herein are advantageous for water treatment.

4.
ACS Appl Mater Interfaces ; 9(37): 32192-32201, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28841288

RESUMEN

We demonstrate efficient antifouling and low protein adhesion of multiwalled carbon nanotubes-polyamide nanocomposite (MWCNT-PA) reverse-osmosis (RO) membranes by combining experimental and theoretical studies using molecular dynamics (MD) simulations. Fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (FITC-BSA) was used for the fouling studies. The fouling was observed in real time by using a crossflow system coupled to a fluorescence microscope. Notably, it was observed that BSA anchoring on the smooth MWCNT-PA membrane was considerably weaker than that of other commercial/laboratory-made plain PA membranes. The permeate flux reduction of the MWCNT-PA nanocomposite membranes by the addition of FITC-BSA was 15% of its original value, whereas those of laboratory-made plain PA and commercial membranes were much larger at 34%-50%. Computational MD simulations indicated that the presence of MWCNT in PA results in weaker interactions between the membrane surface and BSA molecule due to the formation of (i) a stiffer PA structure resulting in lower conformity of the molecular structure against BSA, (ii) a smoother surface morphology, and (iii) an increased hydrophilicity involving the formation of an interfacial water layer. These results are important for the design and development of promising antiorganic fouling RO membranes for water treatment.

5.
J Am Acad Dermatol ; 47(4): 502-4, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12271291

RESUMEN

BACKGROUND: There are two main lymphatic routes from the lower extremity: the fibular route to the popliteal node and the tibial route to the distant groin node. However, little is known about lymphatics from the sole. OBJECTIVE: We attempted to obtain detailed knowledge of the lymphatics from the sole. METHODS: Eight patients with lymphangitis were examined and compared with the drainage patterns visualized by blue-dye injection in 7 cases of melanoma. RESULTS: Six lymphangitic streaks started from the lateral edge of the plantar surface, 2 from the heel, and 1 each from the center of the sole and the little toe. All streaks ran to the tibial side and went up along the foot branch of the great saphenous vein. These findings were similar to those of the dye-injected melanoma cases. CONCLUSION: Lymphangitis makes visualization of lymphatic routes possible and may provide useful information about drainage.


Asunto(s)
Pie/patología , Linfangitis/patología , Sistema Linfático/patología , Adulto , Niño , Preescolar , Femenino , Enfermedades del Pie/patología , Humanos , Masculino , Melanoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA