Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7987): 608-615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938768

RESUMEN

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Asunto(s)
Linfocitos T CD4-Positivos , Herpesvirus Humano 6 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Activación Viral , Latencia del Virus , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Ensayos Clínicos como Asunto , Regulación Viral de la Expresión Génica , Genómica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/aislamiento & purificación , Herpesvirus Humano 6/fisiología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Encefalitis Infecciosa/complicaciones , Encefalitis Infecciosa/virología , Receptores Quiméricos de Antígenos/inmunología , Infecciones por Roseolovirus/complicaciones , Infecciones por Roseolovirus/virología , Análisis de Expresión Génica de una Sola Célula , Carga Viral
2.
Pediatr Nephrol ; 39(8): 2495-2503, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38507119

RESUMEN

BACKGROUND: CD19-specific chimeric antigen receptor (CAR) T-cell therapy has shown promising disease responses in patients with high-risk B-cell malignancies. However, its use may be related to complications such as immune-mediated complications, infections, and end-organ dysfunction. The incidence of post-CAR T-cell therapy acute kidney injury (AKI) in the children, adolescent, and young adult (CAYA) patient population is largely unreported. METHODS: The objectives of this study were to determine the incidence of AKI in CAYA patients with high-risk B-cell malignancies treated with CD19-CAR T-cell therapy, evaluate potential risk factors for developing AKI, and determine patterns of kidney function recovery. We conducted a retrospective analysis of 34 CAYA patients treated with CD19-CAR T-cell at a single institution. RESULTS: There was a cumulative incidence of any grade AKI by day 30 post-infusion of 20% (n = 7), with four cases being severe AKI (stages 2-3) and one patient requiring kidney replacement therapy. All episodes of AKI developed within the first 14 days after receiving CAR T-cell therapy and 50% of patients with AKI recovered kidney function to baseline within 30 days post-infusion. No evaluated pre-treatment risk factors were associated with the development of subsequent AKI; there was an association between AKI and cytokine release syndrome and neurotoxicity. We conclude that the risk of developing AKI following CD19-CAR T-cell therapy is highest early post-infusion, with most cases of AKI being severe. CONCLUSIONS: Frequent monitoring to facilitate early recognition and subsequent management of kidney complications after CD19-CAR T-cell therapy may reduce the severity of AKI in the CAYA patient population.


Asunto(s)
Lesión Renal Aguda , Antígenos CD19 , Inmunoterapia Adoptiva , Humanos , Lesión Renal Aguda/terapia , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/epidemiología , Adolescente , Masculino , Femenino , Estudios Retrospectivos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Niño , Adulto Joven , Incidencia , Preescolar , Antígenos CD19/inmunología , Factores de Riesgo , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/complicaciones , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología
3.
Gene Ther ; 30(3-4): 222-231, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997202

RESUMEN

Autologous chimeric antigen receptor (CAR) T cells targeting the CD19 antigen have demonstrated a high complete response rate in relapsed/refractory B-cell malignancies. However, autologous CAR T cell therapy is not an option for all patients. Here we optimized conditions for clinical-grade manufacturing of allogeneic CD19-CAR T cells using CD45RA-depleted donor memory T cells (Tm) for a planned clinical trial. Tm were activated using the MACS GMP T Cell TransAct reagent and transduced in the presence of LentiBOOST with a clinical-grade lentiviral vector that encodes a 2nd generation CD19-CAR with a 41BB.zeta endodomain. Transduced T cells were transferred to a G-Rex cell culture device for expansion and harvested on day 7 or 8 for cryopreservation. The resulting CD19-CAR(Mem) T cells expanded on average 34.2-fold, and mean CAR expression was 45.5%. The majority of T cells were CD4+ and had a central memory or effector memory phenotype, and retained viral specificity. CD19-CAR(Mem) T cells recognized and killed CD19-positive target cells in vitro and had potent antitumor activity in an ALL xenograft model. Thus we have successfully developed a current good manufacturing practice-compliant process to manufacture donor-derived CD19-CAR(Mem) T cells. Our manufacturing process could be readily adapted for CAR(Mem) T cells targeting other antigens.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Antígenos CD19/genética , Inmunoterapia Adoptiva/métodos , Linfocitos T , GMP Cíclico/metabolismo
4.
Br J Haematol ; 194(4): 701-707, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34263927

RESUMEN

Chimeric antigen receptor T-cell (CAR T-cell) therapy is associated with significant toxicities secondary to immune activation, including a rare but increasingly recognised severe toxicity resembling haemophagocytic lymphohistiocytosis (carHLH). We report the development of carHLH in 14·8% of paediatric patients and young adults treated with CD19-specific CAR T-cell therapy with carHLH, occurring most commonly in those with high disease burden. The diagnosis and treatment of carHLH required a high index of suspicion and included multidrug immunomodulation with variable response to therapies. Compared to patients without carHLH, patients with carHLH had both reduced response to CAR T-cell therapy (P-value = 0·018) and overall survival (P-value = < 0·0001).


Asunto(s)
Inmunoterapia Adoptiva/efectos adversos , Linfohistiocitosis Hemofagocítica/etiología , Adolescente , Adulto , Antígenos CD19/inmunología , Niño , Preescolar , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/terapia , Masculino , Análisis de Supervivencia , Adulto Joven
5.
Pediatr Transplant ; 25(6): e13966, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33405342

RESUMEN

BACKGROUND: EPP is a rare disorder of heme biosynthesis in which patients present with disabling photosensitivity. A subset of patients develop severe liver disease with progressive liver failure necessitating an OLT. A HCT can potentially cure EPP by replacing the native bone marrow, which is the primary site of heme synthesis. However, due to concerns for inherent risks of treatment-related toxicities, the use of HCT has been reserved for patients undergoing an OLT to avoid disease recurrence in the hepatic graft. Data for HCT in EPP are lacking, particularly in the pediatric population. CASE (METHODS/RESULTS): We present the case of a 12-year-old patient with EPP photosensitivity and cirrhosis, whom we successfully treated with pre-emptive allogeneic HCT, significantly improving the patient's quality of life. We used a matched-unrelated donor bone marrow-derived graft. Our patient achieved full donor peripheral blood chimerism and has not had any evidence of GVHD. In addition to resolution of photosensitivity, our patient had reversal of liver fibrosis which we feel was largely due to intervention at an early stage of compensated cirrhosis. CONCLUSION: Our case highlights the successful application of a known RIC regimen to this rare disorder that was well tolerated with sustained donor engraftment. It also emphasizes the importance of timing for HCT in patients with EPP and liver fibrosis. HCT should be considered early in pediatric patients with EPP-hepatopathy to prevent progression to liver failure and need for OLT with lifelong immunosuppression.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Cirrosis Hepática/cirugía , Protoporfiria Eritropoyética/terapia , Niño , Humanos , Protoporfiria Eritropoyética/genética , Acondicionamiento Pretrasplante
6.
Int J Qual Health Care ; 31(8): 633-638, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30423134

RESUMEN

QUALITY PROBLEM OR ISSUE: Night-shift medical providers frequently experience limited sleep resulting in fatigue, often because of paging activity. Streamlined medical-specific communication interventions are known to improve sleep and communication among these providers. INITIAL ASSESSMENT: We found that non-urgent paging communication occurred frequently during night-shifts, leading to provider sleep disturbances within our institution. We tested a quality improvement (QI) intervention to improve paging practices and determined its effect on provider sleep. CHOICE OF SOLUTION: We used a Plan-Do-Study-Act QI model aimed at improving clinician sleep and paging communications. IMPLEMENTATION: We initially conducted focus groups of nurses and physician trainees to inform the creation of a standardized paging intervention. We collected actigraphy and sleep log data from physicians, nurse practitioners, and physician trainees and performed electronic collection of paging frequency data. EVALUATION: Data were collected between December 2015 and March 2017 from pediatric residents, pediatric hematology/oncology (PHO) fellows, hospitalist medicine nocturnists and nurses working during night-shift hours in PHO inpatient units. We collected baseline data before implementation of the QI intervention and at 1 month post-implementation. Although objective measures and provider reports demonstrated improved medical-specific communication paging practices, provider sleep was not affected. LESSONS LEARNED: Provider-based standardization of paging communication was associated with improved medical-specific communication between nurses and providers; however, provider sleep was not affected. The strategies used in this intervention may be transferable to other clinics and institutions to streamline medical-specific communication.


Asunto(s)
Comunicación , Internado y Residencia , Médicos , Sueño , Actigrafía , Femenino , Humanos , Masculino , Personal de Enfermería en Hospital , Pediatría , Mejoramiento de la Calidad/organización & administración , Horario de Trabajo por Turnos
7.
Biol Blood Marrow Transplant ; 23(11): 1910-1917, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28733263

RESUMEN

The treatment of pediatric high-risk neuroblastoma is intensive and multimodal. Despite the introduction of immunotherapy for minimal residual disease, survival rates remain suboptimal and new therapies are needed. As part of a phase 2 trial, we are using a consolidation therapy regimen that combines a busulfan/melphalan conditioning schema, autologous hematopoietic cell transplantation (AHCT), and experimental immunotherapy with hu14.18K322A (a humanized anti-GD2 monoclonal antibody), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-2, with or without the adoptive transfer of haploidentical natural killer cells (NKs). Here we report on 30 patients who have undergone AHCT with this experimental immunotherapy regimen, 21 of whom received haploidentical NKs. The median time to neutrophil engraftment was 13 days (range, 10 to 28 days) and to platelet engraftment of at least 20 × 103/mm3 was 36.5 days (range, 0 to 102 days); no clinical difference was seen in those who did or did not receive NKs. Eight patients developed veno-occlusive disease, with 3 having multiorgan dysfunction. Toxicities were similar for patients who did or did not receive NKs. We conclude that this consolidation regimen is feasible and has an acceptable acute toxicity profile.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Busulfano/uso terapéutico , Quimioterapia de Consolidación/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/métodos , Interleucina-2/uso terapéutico , Células Asesinas Naturales/metabolismo , Melfalán/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Trasplante Autólogo/métodos , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos
8.
Transplant Cell Ther ; 30(6): 565-579, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588880

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable efficacy in relapsed/refractory (r/r) B cell malignancies, including in pediatric patients with acute lymphoblastic leukemia (ALL). Expanding this success to other hematologic and solid malignancies is an area of active research and, although challenges remain, novel solutions have led to significant progress over the past decade. Ongoing clinical trials for CAR T cell therapy for T cell malignancies and acute myeloid leukemia (AML) have highlighted challenges, including antigen specificity with off-tumor toxicity and persistence concerns. In T cell malignancies, notable challenges include CAR T cell fratricide and prolonged T cell aplasia, which are being addressed with strategies such as gene editing and suicide switch technologies. In AML, antigen identification remains a significant barrier, due to shared antigens across healthy hematopoietic progenitor cells and myeloid blasts. Strategies to limit persistence and circumvent the immunosuppressive tumor microenvironment (TME) created by AML are also being explored. CAR T cell therapies for central nervous system and solid tumors have several challenges, including tumor antigen heterogeneity, immunosuppressive and hypoxic TME, and potential for off-target toxicity. Numerous CAR T cell products have been designed to overcome these challenges, including "armored" CARs and CAR/T cell receptor (TCR) hybrids. Strategies to enhance CAR T cell delivery, augment CAR T cell performance in the TME, and ensure the safety of these products have shown promising results. In this manuscript, we will review the available evidence for CAR T cell use in T cell malignancies, AML, central nervous system (CNS), and non-CNS solid tumor malignancies, and recommend areas for future research.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Niño , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/trasplante , Adolescente , Adulto , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Microambiente Tumoral/inmunología
9.
Transplant Cell Ther ; 30(1): 38-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821079

RESUMEN

Chimeric antigen receptor (CAR) T cell (CAR-T) therapy has emerged as a revolutionary cancer treatment modality, particularly in children and young adults with B cell malignancies. Through clinical trials and real-world experience, much has been learned about the unique toxicity profile of CAR-T therapy. The past decade brought advances in identifying risk factors for severe inflammatory toxicities, investigating preventive measures to mitigate these toxicities, and exploring novel strategies to manage refractory and newly described toxicities, infectious risks, and delayed effects, such as cytopenias. Although much progress has been made, areas needing further improvements remain. Limited guidance exists regarding initial administration of tocilizumab with or without steroids and the management of inflammatory toxicities refractory to these treatments. There has not been widespread adoption of preventive strategies to mitigate inflammation in patients at high risk of severe toxicities, particularly children. Additionally, the majority of research related to CAR-T toxicity prevention and management has focused on adult populations, with only a few pediatric-specific studies published to date. Given that children and young adults undergoing CAR-T therapy represent a unique population with different underlying disease processes, physiology, and tolerance of toxicities than adults, it is important that studies be conducted to evaluate acute, delayed, and long-term toxicities following CAR-T therapy in this younger age group. In this pediatric-focused review, we summarize key findings on CAR-T therapy-related toxicities over the past decade, highlight emergent CAR-T toxicities, and identify areas of greatest need for ongoing research.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Niño , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores de Antígenos de Linfocitos T , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Factores de Riesgo
10.
J Hematol Oncol ; 17(1): 50, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937803

RESUMEN

BACKGROUND: Relapse remains a challenge after transplantation in pediatric patients with hematological malignancies. Myeloablative regimens used for disease control are associated with acute and long-term adverse effects. We used a CD45RA-depleted haploidentical graft for adoptive transfer of memory T cells combined with NK-cell addback and hypothesized that maximizing the graft-versus-leukemia (GVL) effect might allow for reduction in intensity of conditioning regimen. METHODS: In this phase II clinical trial (NCT01807611), 72 patients with hematological malignancies (complete remission (CR)1: 25, ≥ CR2: 28, refractory disease: 19) received haploidentical CD34 + enriched and CD45RA-depleted hematopoietic progenitor cell grafts followed by NK-cell infusion. Conditioning included fludarabine, thiotepa, melphalan, cyclophosphamide, total lymphoid irradiation, and graft-versus-host disease (GVHD) prophylaxis consisted of a short-course sirolimus or mycophenolate mofetil without serotherapy. RESULTS: The 3-year overall survival (OS) and event-free-survival (EFS) for patients in CR1 were 92% (95% CI:72-98) and 88% (95% CI: 67-96); ≥ CR2 were 81% (95% CI: 61-92) and 68% (95% CI: 47-82) and refractory disease were 32% (95% CI: 11-54) and 20% (95% CI: 6-40). The 3-year EFS for all patients in morphological CR was 77% (95% CI: 64-87) with no difference amongst recipients with or without minimal residual disease (P = 0.2992). Immune reconstitution was rapid, with mean CD3 and CD4 T-cell counts of 410/µL and 140/µL at day + 30. Cumulative incidence of acute GVHD and chronic GVHD was 36% and 26% but most patients with acute GVHD recovered rapidly with therapy. Lower rates of grade III-IV acute GVHD were observed with NK-cell alloreactive donors (P = 0.004), and higher rates of moderate/severe chronic GVHD occurred with maternal donors (P = 0.035). CONCLUSION: The combination of a CD45RA-depleted graft and NK-cell addback led to robust immune reconstitution maximizing the GVL effect and allowed for use of a submyeloablative, TBI-free conditioning regimen that was associated with excellent EFS resulting in promising long-term outcomes in this high-risk population. The trial is registered at ClinicalTrials.gov (NCT01807611).


Asunto(s)
Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Células T de Memoria , Acondicionamiento Pretrasplante , Trasplante Haploidéntico , Humanos , Femenino , Masculino , Células Asesinas Naturales/trasplante , Células Asesinas Naturales/inmunología , Niño , Adolescente , Trasplante Haploidéntico/métodos , Preescolar , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Acondicionamiento Pretrasplante/métodos , Neoplasias Hematológicas/terapia , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/etiología , Lactante , Adulto Joven , Adulto , Resultado del Tratamiento , Efecto Injerto vs Leucemia
11.
Cell Rep Med ; 4(2): 100949, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36812888

RESUMEN

Sworder et al.1 developed an integrated simultaneous tumor and effector profiling (STEP) approach to study resistance mechanisms to CD19-CAR T cell therapy in large B-cell lymphomas. Their study provides novel biological insights and paves the way for future interventions.


Asunto(s)
Fenómenos Bioquímicos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Inmunoterapia Adoptiva
12.
Hematology Am Soc Hematol Educ Program ; 2023(1): 91-96, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066941

RESUMEN

CD19-specific chimeric antigen receptor (CAR) T-cell therapy has become an integral part of our treatment armamentarium for pediatric patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). However, despite initial remission rates of greater than 80%, durable remission occurs in only 40% to 50% of patients. In this review we summarize our current knowledge of the role of consolidative hematopoietic cell transplantation in the management of pediatric patients who achieved a minimal residual disease-negative complete response post CD19 CAR T-cell therapy. In addition, we review approaches to enhance effector function CD19 CAR T cells, focusing on how to improve persistence and prevent the emergence of CD19- B-ALL blasts.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores Quiméricos de Antígenos , Niño , Humanos , Antígenos CD19 , Inmunoterapia Adoptiva/efectos adversos , Recurrencia , Linfocitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
13.
Lymphatics ; 1(1): 34-44, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38269058

RESUMEN

Cure rates now exceed 90% in many contemporary trials for children with B-cell acute lymphoblastic leukemia (ALL). However, treatment remains suboptimal and therapy is toxic for all patients. New treatment options potentially offer the chance to reduce both treatment resistance and toxicity. Here, we review recent advances in ALL diagnostics, chemotherapy, and immunotherapy. In addition to describing recently published results, we also attempt to project the impact of these new developments into the future to imagine what B-ALL therapy may look like in the next few years.

14.
J Pain Symptom Manage ; 66(3): 248-257, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302531

RESUMEN

CONTEXT: Early integration of palliative care (PC) in hematopoietic cell transplantation (HCT) has demonstrated benefits, yet barriers remain, including perceived lack of patient/caregiver receptivity despite no data on attitudes toward PC and limited patient/caregiver reported outcomes in pediatric HCT. OBJECTIVES: This study aimed to evaluate perceived symptom burden and patient/parent attitudes toward early PC integration in pediatric HCT. METHODS: Following IRB approval, consent/assent, eligible participants were surveyed at St. Jude Children's Research Hospital including English-speaking patients aged 10-17, 1-month to 1-year from HCT, and their parents/primary-caregivers, as well as parent/primary-caregivers of living HCT recipients

Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Cuidados Paliativos , Humanos , Niño , Pacientes , Padres , Calidad de Vida , Actitud , Cuidadores
15.
Res Sq ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37886451

RESUMEN

CD19-specific chimeric antigen receptor (CAR) T-cell therapy has shown promising disease responses in patients with high-risk B-cell malignancies. Treatment with CD19-CAR T-cell therapy is also associated with the risk of morbidity and mortality, primarily related to immune-mediated complications (cytokine release syndrome [CRS] and neurotoxicity [NTX]), infections, and end-organ dysfunction. Despite these well-described systemic toxicities, the incidence of post-CAR T-cell therapy acute kidney injury (AKI) in the children, adolescent and young adult (CAYA) patient population is largely unreported. The objectives of this study were to determine the incidence of AKI in CAYA patients with high-risk B-cell malignancies treated with CD19-CAR T-cell therapy, evaluate potential risk factors for developing AKI, and determine patterns of kidney function recovery. In this retrospective analysis of 34 CAYA patients treated with CD19-CAR T-cell at a single institution, we found a cumulative incidence of any grade AKI by day 30 post-infusion of 20% (n=7), with 4 cases being severe AKI (Stage 2-3) and one patient requiring kidney replacement therapy. All episodes of AKI developed within the first 14 days after receiving CAR T-cell therapy and 50% of patients with AKI recovered kidney function to baseline within 30 days post-infusion. No evaluated pre-treatment risk factors were associated with the development of subsequent AKI; there was an association between AKI and CRS and NTX. We conclude that the risk of developing AKI following CD19-CAR T-cell therapy is highest early post-infusion, with most cases of AKI being severe. Although most patients with AKI in our cohort had recovery of kidney function, frequent monitoring to facilitate early recognition and subsequent management of kidney complications after CD19-CAR T-cell therapy may reduce the severity of AKI in the CAYA patient population.

16.
Sci Adv ; 9(40): eadg9959, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801507

RESUMEN

Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes. These signatures were validated in T cells transduced with an LV encoding a CD19-specific chimeric antigen receptor. Intriguingly, the one patient whose VISs deviated from the identified integrome signatures had a distinct clinical course. Comparison of LV and gamma retrovirus integromes regarding their 3D genome signatures identified differences that might explain the lower risk of insertional mutagenesis in LV-based gene therapy. Our findings suggest that LV integrome signatures, shaped by common features such as genome organization, may affect the efficacy of LV-based cellular therapies.


Asunto(s)
Vectores Genéticos , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X , Humanos , Vectores Genéticos/genética , Terapia Genética , Retroviridae/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Linfocitos T
17.
Transplant Cell Ther ; 29(7): 438.e1-438.e16, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36906275

RESUMEN

T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndromes de Neurotoxicidad , Adulto , Humanos , Estados Unidos , Niño , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/etiología , Síndromes de Neurotoxicidad/etiología , Linfocitos T , Inmunoterapia Adoptiva/efectos adversos , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/complicaciones
18.
Hematol Oncol Clin North Am ; 36(4): 701-727, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780062

RESUMEN

Chimeric antigen receptor T-cell (CART) therapy has transformed the treatment paradigm for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL), with complete remission rates in key pivotal CD19-CART trials ranging from 65% to 90%. Alongside this new therapy, new toxicity profiles and treatment limitations have emerged, necessitating toxicity consensus grading systems, cooperative group trials, and novel management approaches. This review highlights the results of key clinical trials of CART for pediatric hematologic malignancies, discusses the most common toxicities seen to date, and elucidates challenges, opportunities, and areas of active research to optimize this therapy.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico
19.
Front Oncol ; 12: 845540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356197

RESUMEN

CD19-specific chimeric antigen receptor (CAR) T cell therapy has changed the treatment paradigm for pediatric, adolescent and young adult (AYA) patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, data on the associated infectious disease challenges in this patient population are scarce. Knowledge of infections presenting during treatment, and associated risk factors, is critical for pediatric cellular therapy and infectious disease specialists as we seek to formulate effective anti-infective prophylaxis, infection monitoring schemas, and empiric therapy regimens. In this work we describe our institutional experience in a cohort of 38 pediatric and AYA patients with CD19-positive malignancy treated with lymphodepleting chemotherapy (fludarabine/cyclophosphamide) followed by a single infusion of CD19-CAR T cells (total infusions, n=39), including tisagenlecleucel (n=19; CD19/4-1BB) or on an institutional clinical trial (n=20; CD19/4-1BB; NCT03573700). We demonstrate that infections were common in the 90 days post CAR T cells, with 19 (50%) patients experiencing a total of 35 infections. Most of these (73.7%) occurred early post infusion (day 0 to 28; infection density of 2.36 per 100 patient days-at-risk) compared to late post infusion (day 29 to 90; infection density 0.98 per 100 patient days-at-risk), respectively. Bacterial infections were more frequent early after CAR T cell therapy, with a predominance of bacterial blood stream infections. Viral infections occurred throughout the post infusion period and included primarily systemic reactivations and gastrointestinal pathogens. Fungal infections were rare. Pre-infusion disease burden, intensity of bridging chemotherapy, lymphopenia post lymphodepleting chemotherapy/CAR T cell infusion and development of CAR-associated hemophagocytic lymphohistiocytosis (carHLH) were all significantly associated with either infection density or time to first infection post CAR T cell infusion. A subset of patients (n=6) had subsequent CAR T cell reinfusion and did not appear to have increased risk of infectious complications. Our experience highlights the risk of infections after CD19-CAR T cell therapy, and the need for continued investigation of infectious outcomes as we seek to improve surveillance, prophylaxis and treatment algorithms.

20.
Transplant Cell Ther ; 28(2): 73.e1-73.e9, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875402

RESUMEN

CD19-specific chimeric antigen receptor (CAR) T-cell therapies, including the FDA-approved tisagenlecleucel, induce high rates of remission in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, post-treatment relapse remains an issue. Optimal management of B-ALL after tisagenlecleucel treatment remains elusive, and continued tracking of outcomes is necessary to establish a standard of care for this population. We sought to evaluate outcomes on the real-world use of tisagenlecleucel in a contemporary pediatric patient population and to identify risk factors influencing event-free survival (EFS) and overall survival (OS). Additionally, we aimed to describe post-tisagenlecleucel management strategies, including use of allogeneic hematopoietic cell transplantation (AlloHCT) or repeat CAR T-cell infusions. We report on 31 pediatric and adolescent and young adult patients (AYA) with B-ALL, treated with lymphodepleting chemotherapy followed by tisagenlecleucel. Patients were treated at Johns Hopkins Hospital and St. Jude Children's Research Hospital between March 2018 and November 2020. Data on patient, disease, and treatment characteristics were collected retrospectively from medical records and described. EFS and OS were estimated by the Kaplan-Meier method and compared by the log-rank test. Single-factor and multiple-factor analysis of EFS and OS were performed by fitting Cox regression models. Of the 30 evaluable patients, 25 (83.3%) experienced a complete response, with 21 having negative minimal residual disease. Treatment was well tolerated, with expected rates of cytokine release syndrome (61.3%) and immune effector cell-associated neurotoxicity (29%). After initial complete response, 12 patients (48%) had subsequent disease recurrence, with CD19-negative relapse (n = 6) occurring sooner than CD19-positive relapse (P = .0125). With a median follow-up time of 386 days (range 11-1187 days), the EFS for the entire cohort (n = 31) at 6 and 12 months after infusion was 47% (95% confidence interval [CI], 28.4%-63.4%) and 35.2% (95% CI, 18.4%-52.5%), respectively. In multivariate analysis, high pretreatment leukemic burden (≥5% bone marrow blasts) was an independent risk factor for inferior EFS (HR 5.98 [95% CI, 1.1-32.4], P = .0380) and OS (HR 4.2 [95% CI, 1.33-13.39], P = .0148). Tisagenlecleucel induced high initial response rates in a contemporary cohort of pediatric and AYA patients with B-ALL. However, 48% of patients experienced subsequent disease relapse, including 6 with antigen-escape variants. This highlights a considerable limitation of single-agent autologous CD19-CAR T-cell therapy. Pretreatment leukemic disease burden of ≥5% blasts was significantly associated with worse outcomes in this study, including lower EFS and OS. Our findings suggest that reducing preinfusion leukemic burden is a viable treatment strategy to improve outcomes of CAR T-cell therapy.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Adolescente , Antígenos CD19/uso terapéutico , Niño , Costo de Enfermedad , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/uso terapéutico , Recurrencia , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA