Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(11): 996-1005, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37992230

RESUMEN

ABSTRACT: Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Melfalán/farmacología , Inestabilidad Genómica , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
2.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38551812

RESUMEN

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/inmunología , Mieloma Múltiple/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Bortezomib/farmacología , Bortezomib/uso terapéutico , Calreticulina/metabolismo , Calreticulina/genética , Muerte Celular Inmunogénica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Autofagia/efectos de los fármacos
3.
Blood ; 141(4): 391-405, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36126301

RESUMEN

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Asunto(s)
MicroARNs , Mieloma Múltiple , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Mieloma Múltiple/genética , Cromatina , MicroARNs/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
4.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178737

RESUMEN

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Asunto(s)
Adenocarcinoma , Resistencia a Antineoplásicos , Masculino , Animales , Ratones , Humanos , Resistencia a Antineoplásicos/genética , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Recombinación Homóloga , Ciclo Celular , Inestabilidad Genómica , Genómica , Inestabilidad Cromosómica/genética , Desoxirribonucleasas/genética , Evolución Molecular
5.
Mol Biol Rep ; 49(4): 3025-3032, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35020120

RESUMEN

BACKGROUND: The frequency of triple-negative breast cancer (TNBC) incidence varies among different populations suggesting the involvement of genetic components towards TNBC development. Previous studies have reported that BRCA1/2 germline mutations confer a lifetime risk of developing TNBC. However, there is hardly any information regarding the common pathogenic variants (PVs) in BRCA1/2 genes that contribute to TNBC in the Indian population. Hence, we screened for PVs in BRCA1/2 and their association with clinico-pathological features in TNBC patients. METHODS AND RESULTS: The study recruited 59 TNBC patients without hereditary breast and ovarian cancer (HBOC) from South India. The entire BRCA1 and BRCA2 genes were sequenced for the 59 patients using the Illumina HiSeq X Ten sequencer. Among the 59 TNBC genomic DNA samples sequenced, BRCA mutations were identified in 8 patients (13.6%), BRCA1 mutations in 6 patients, and BRCA2 mutations in 2 patients. Among the 6 BRCA1 mutations, three were c.68_69delAG (185delAG) mutation. Remarkably, all the TNBC patients with BRCA mutations exhibited higher-grade tumors (grade 2 or 3). However, among all the BRCA mutation carriers, only one patient with a BRCA2 mutation (p.Glu1879Lys) developed metastasis. CONCLUSION: Our data advocates that South Indian women with higher grade TNBC tumors and without HBOC could be considered for BRCA mutation screening, thereby enabling enhanced decision-making and preventive therapy.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Neoplasias de la Mama Triple Negativas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Femenino , Genes BRCA2 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Ováricas/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
6.
Breast Cancer Res Treat ; 186(3): 823-837, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33392841

RESUMEN

BACKGROUND: Functional variants of the xenobiotic-metabolizing genes (XMG) might modulate breast cancer (BC) risk by altering the rate of metabolism and clearance of myriad types of potent carcinogens from the breast tissue. Despite mounting evidence on the role of XMG variants on BC risk, the current knowledge regarding their influence on BC development is still fragmentary. METHODS: The present study examined the candidate genetic variants in CYP1A1, NQO1, GST-T1, GST-M1, and GST-P1 in 1002 subjects (502 BC patients and 500 disease-free women). PCR-RFLP was employed to genotype the mono-nucleotide variation in CYP1A1, NQO1, and GST-P1, and allele-specific PCR was used to detect the deletion polymorphism in GST-T1 and GST-M1 genes. RESULTS: Regarding CYP1A1-M1 polymorphism, the heterozygous TC and mutant CC genotype conferred 1.47-fold (95% CI 1.13-1.91, p = 0.004) and 1.84-fold (95% CI 1.17-2.91, p = 0.009) elevated risk of BC. GST-T1 null genotype was associated with increased BC risk (OR 1.47; 95% CI 1.02-2.11, p = 0.037). For the NQO1 C609T variant, the mutant T allele was associated with BC risk with an odds ratio of 1.22 (95% CI 1.02-1.48, p = 0.034). Combinatorial analysis indicated that the presence of NQO1*2 (CT), CYP1A1-M1 (CC), and GST-P1 rs1695 (AG) genotypes conferred 16.7-fold elevated risk of BC (95% CI 3.65-76.85; p < 0.001). Moreover, GST-M1 null genotype was associated with the development of larger primary breast tumors. CONCLUSION: Xenobiotic-metabolizing gene polymorphisms may play a crucial role in mammary carcinogenesis in South Indian women.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Glutatión Transferasa/genética , Humanos , Polimorfismo Genético , Factores de Riesgo , Xenobióticos
7.
Biochem Soc Trans ; 48(6): 2791-2810, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33258920

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.


Asunto(s)
Apoptosis , Cromatina/química , Resistencia a Antineoplásicos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Mutación , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Biomarcadores de Tumor , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Genoma , Humanos , Conformación de Ácido Nucleico , Estudios Prospectivos , ARN Catalítico/química , ARN Largo no Codificante/genética
8.
Mol Biol Rep ; 47(7): 5081-5090, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32519309

RESUMEN

Identification of modifier genes predisposing to breast cancer (BC) phenotype remains a significant challenge and varies with ethnicity. The genetic variability observed in DNA repair genes may modulate the cell's ability to repair the damaged DNA and hence, evaluation of genetic variants in crucial DNA damage repair genes is of clinical importance. We performed the present study to evaluate the role of ERCC2-Lys751Gln, hOGG1-Ser326Cys, and XRCC1-Arg399Gln gene polymorphisms on the risk of BC development and its molecular profile in Indian women. Three non-synonymous variants (rs13181, rs1052133, and rs25487) were genotyped in 464 BC patients and 450 healthy controls. Logistic regression was employed to evaluate the association of genotypes with BC risk. Also, in silico analysis was carried out to map the Arg399Gln variant on the BRCT1 domain of XRCC1 protein. XRCC1 Gln/Gln genotype frequency was significantly elevated in BC patients [odd ratio (OR) = 1.73; 95% confidence interval (CI) = 1.13-2.65]. No significant association was observed between hOGG1-Ser326Cys and ERCC2-Lys751Gln variants and BC risk. Subgroup analysis revealed that ERCC2-Lys751Gln and XRCC1-Arg399Gln variants contributed towards tumor progression. A positive interaction between the investigated SNPs and BC was revealed by MDR analysis. Arg399Gln variant resulted in a change in the surface charge of XRCC1 protein. The rs25487 variant of XRCC1 might be associated with an elevated risk of BC. Furthermore, we demonstrated that high order gene-gene interaction plays a significant role in BC etiology. Hence, understanding the impact of low penetrant gene polymorphisms might enable a better understanding of the genetic background of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , ADN Glicosilasas/genética , Polimorfismo de Nucleótido Simple , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Adulto , Anciano , Anciano de 80 o más Años , ADN Glicosilasas/química , Femenino , Humanos , India , Persona de Mediana Edad , Simulación de Dinámica Molecular , Mutación Missense , Dominios Proteicos , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química
9.
Nat Commun ; 15(1): 4139, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755155

RESUMEN

The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Células Madre Mesenquimatosas , Mieloma Múltiple , Microambiente Tumoral , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Humanos , Microambiente Tumoral/genética , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Transcripción Genética , Células de la Médula Ósea/metabolismo , Movimiento Celular/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Femenino , Masculino
10.
Blood Cancer J ; 13(1): 23, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737429

RESUMEN

Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a "proof of concept", we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Empalme Alternativo , ARN , Empalme del ARN
11.
Front Oncol ; 13: 1271807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111533

RESUMEN

Background: Multiple Myeloma (MM) patients exhibit dysregulated immune system, which is further weakened by chemotherapeutic agents. While cereblon-modulating agents, such as pomalidomide and lenalidomide, have been found to improve the immune profile, the efficacy of their impact in combination with other treatments is yet unknown. Methods: We conducted an immune-profiling of a longitudinal cohort of 366 peripheral blood samples from the CC4047-MM-007 (OPTIMISMM, NCT01734928) study. This study followed relapsed/refractory Multiple Myeloma (RRMM) patients who were treated with Velcade + dexamethasone (Vd), or Vd with pomalidomide (PVd). 366 blood samples from 186 patients were evaluated using multi-color flow cytometry at 3 timepoints: screening, day 8 of cycle 1, and cycle 3. Results: Among NK and NKT cell populations, adding pomalidomide showed no inhibition in the frequency of NK cells. When expression of double positivity for activation markers like, p46/NKG2D, on NK cells was higher than the median, PVd treated patients showed significantly better (p=0.05) progression-free survival (PFS) (additional 15 months) than patients with lower than the median expression of p46/NKG2D on NK cells. PVd treated patients who expressed CD158a/b below the median at cycle 1 demonstrated a significantly better PFS (more than 18months). Among B cell subtypes, PVd treatment significantly increased the abundance of B1b cells (p<0.05) and decreased Bregs (p<0.05) at day 8 of both cycle 1 and cycle 3 when compared to screening samples. Of all the B cell-markers evaluated among paired samples, a higher expression of MZB cells at day 8 of cycle 1 has resulted in enhanced PFS in PVd treated patients. Within T cells, pomalidomide treatment did not decrease the frequency of CD8 T cells when compared with screening samples. The higher the surface expression of OX-40 on CD8 T cells and the lower the expression of PD-1 and CD25 on CD4 T cells by PVd treatment resulted in improved PFS. Conclusion: The prognostic significance for the number of immune markers is only seen in the PVd arm and none of these immune markers exhibit prognostic values in the Vd arm. This study demonstrates the importance of the immunomodulatory effects and the therapeutic benefit of adding pomalidomide to Vd treatment.

12.
PLoS One ; 17(1): e0259761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061678

RESUMEN

BACKGROUND: Homologous recombination repair (HRR) accurately repairs the DNA double-strand breaks (DSBs) and is crucial for genome stability. Genetic polymorphisms in crucial HRR pathway genes might affect genome stability and promote tumorigenesis. Up to our knowledge, the present study is the first to investigate the impact of HRR gene polymorphisms on BC development in South Indian women. The present population-based case-control study investigated the association of polymorphisms in three key HRR genes (XRCC2-Arg188His, XRCC3-Thr241Met and RAD51-G135C) with BC risk. MATERIALS AND METHODS: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping the HRR variants in 491 BC cases and 493 healthy women. RESULTS: We observed that the XRCC3 Met allele was significantly associated with BC risk [OR:1.27 (95% CI: 1.02-1.60); p = 0.035]. In addition, the homozygous mutant (C/C) genotype of RAD51 G135C variant conferred 2.19 fold elevated risk of BC [OR: 2.19 (95% CI: 1.06-4.54); p = 0.034]. Stratified analysis of HRR variants and BC clinicopathological features revealed that the XRCC3-Thr241Met and RAD51-G135C variants are associated with BC progression. Combined SNP analysis revealed that the individuals with RAD51-C/C, XRCC2-Arg/Arg, and XRCC3-Thr/Thr genotype combination have three-fold increased BC risk. CONCLUSION: The present study imparts additional evidence that genetic variants in crucial HRR pathway genes might play a pivotal role in modulating BC risk in South Indian women.


Asunto(s)
Reparación del ADN por Recombinación
13.
Cancers (Basel) ; 14(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36428789

RESUMEN

BACKGROUND: In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS: The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS: Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS: Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.

14.
Commun Biol ; 4(1): 617, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031527

RESUMEN

Esophageal adenocarcinoma (EAC) is associated with a marked genomic instability, which underlies disease progression and development of resistance to treatment. In this study, we used an integrated genomics approach to identify a genomic instability signature. Here we show that elevated expression of this signature correlates with poor survival in EAC as well as three other cancers. Knockout and overexpression screens establish the relevance of these genes to genomic instability. Indepth evaluation of three genes (TTK, TPX2 and RAD54B) confirms their role in genomic instability and tumor growth. Mutational signatures identified by whole genome sequencing and functional studies demonstrate that DNA damage and homologous recombination are common mechanisms of genomic instability induced by these genes. Our data suggest that the inhibitors of TTK and possibly other genes identified in this study have potential to inhibit/reduce growth and spontaneous as well as chemotherapy-induced genomic instability in EAC and possibly other cancers.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Neoplasias Esofágicas/patología , Evolución Molecular , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Mutación , Adenocarcinoma/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Esofágicas/genética , Femenino , Inestabilidad Genómica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Secuenciación Completa del Genoma , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Blood Cancer J ; 11(10): 166, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625538

RESUMEN

Multiple myeloma (MM) is a heterogeneous disease characterized by significant genomic instability. Recently, a causal role for the AID/APOBEC deaminases in inducing somatic mutations in myeloma has been reported. We have identified APOBEC/AID as a prominent mutational signature at diagnosis with further increase at relapse in MM. In this study, we identified upregulation of several members of APOBEC3 family (A3A, A3B, A3C, and A3G) with A3G, as one of the most expressed APOBECs. We investigated the role of APOBEC3G in MM and observed that A3G expression and APOBEC deaminase activity is elevated in myeloma cell lines and patient samples. Loss-of and gain-of function studies demonstrated that APOBEC3G significantly contributes to increase in DNA damage (abasic sites and DNA breaks) in MM cells. Evaluation of the impact on genome stability, using SNP arrays and whole genome sequencing, indicated that elevated APOBEC3G contributes to ongoing acquisition of both the copy number and mutational changes in MM cells over time. Elevated APOBEC3G also contributed to increased homologous recombination activity, a mechanism that can utilize increased DNA breaks to mediate genomic rearrangements in cancer cells. These data identify APOBEC3G as a novel gene impacting genomic evolution and underlying mechanisms in MM.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Daño del ADN , Inestabilidad Genómica , Mieloma Múltiple/enzimología , Mutación , Proteínas de Neoplasias/metabolismo , Desaminasa APOBEC-3G/genética , Línea Celular Tumoral , Humanos , Mieloma Múltiple/genética , Proteínas de Neoplasias/genética
16.
Blood Cancer Discov ; 2(5): 468-483, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34568832

RESUMEN

Proteasome inhibitor bortezomib induces apoptosis in multiple myeloma (MM) cells, and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine MM models, we here show that bortezomib also triggers immunogenic cell death (ICD) characterized by exposure of calreticulin on dying MM cells, phagocytosis of tumor cells by dendritic cells, and induction of MM specific immunity. We identify a bortezomib-triggered specific ICD-gene signature associated with better outcome in two independent MM patient cohorts. Importantly, bortezomib stimulates MM cells immunogenicity via activation of cGAS/STING pathway and production of type-I interferons; and STING agonists significantly potentiate bortezomib-induced ICD. Our studies therefore delineate mechanisms whereby bortezomib exerts immunotherapeutic activity, and provide the framework for clinical trials of STING agonists with bortezomib to induce potent tumor-specific immunity and improve patient outcome in MM.


Asunto(s)
Mieloma Múltiple , Animales , Bortezomib/farmacología , Humanos , Inmunidad , Proteínas de la Membrana/genética , Ratones , Mieloma Múltiple/tratamiento farmacológico , Nucleotidiltransferasas/genética , Transducción de Señal
17.
Clin Chim Acta ; 503: 1-18, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31901481

RESUMEN

Long non-coding RNAs (lncRNAs) are an important novel class of non-coding RNAs having lengths of 200 nucleotides and low expression. The HOX Transcript Antisense Intergenic RNA (HOTAIR) is one of the most extensively studied lncRNAs found dysregulated in human cancer. Although a growing body of evidence suggests a role fo HOTAIR in pathogenesis, disease progression, drug resistance and reduced survival, its mechanism of action remains largely unclear. Recent studies have identified that HOTAIR facilitates protein-protein interaction thereby affecting diverse pathways in cancer such as epigenetic reprogramming, protein stability and signal transduction. HOTAIR has been shown to promote tumor progression by regulating microRNA expression and function. Moreover, several HOTAIR gene variants have recently been identified and found to increase cancer susceptibility. Here we review recent data on the critical role of HOTAIR in human malignancy and its potential mechanism of action. A more comprehensive understanding of this unique lncRNA is critical to elucidating the pro-oncogenic function of HOTAIR its potential application in diagnosis, prognosis and treatment.


Asunto(s)
Neoplasias/genética , ARN Largo no Codificante/fisiología , Carcinogénesis/genética , Progresión de la Enfermedad , Humanos , Neoplasias/diagnóstico , Pronóstico , Mapas de Interacción de Proteínas , ARN Largo no Codificante/metabolismo
18.
Asian J Neurosurg ; 15(3): 484-493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145196

RESUMEN

INTRODUCTION: Posterior circulation aneurysm constitutes 15%-20% of all intracerebral aneurysms. With the advancement of endovascular techniques, the microsurgery for posterior circulation aneurysms has been pushed back a little. Even the International Subarachnoid Aneurysmal Trial gave support to the concepts of endovascular procedures, but microsurgical modality should not be discouraged. We present our institutional experience of microsurgical techniques on posterior circulation aneurysms. MATERIALS AND METHODS: We performed a retrospective analysis of 37 patients of posterior circulation aneurysm from 2015 to 2019, referred to Bantane Hospital, Japan. We included all posterior circulation aneurysms such as basilar tip, basilar trunk, and vertebral artery-posterior inferior cerebellar artery (VA-PICA) aneurysms, admitted and treated with clipping or bypass and trapping. We assessed the outcome as measured by modified Rankin Score (mRS), complications, and mortality. RESULTS: Out of 37 patients, 10 cases were a basilar tip, one case was the basilar trunk, and 26 cases were VA-PICA aneurysm. Intraoperatively, neuromonitoring, indocyanine green dye, dual-image videoangiography (DIVA), and neuro endoscope were used. Two patients of basilar tip aneurysm developed third cranial nerve paresis and six patients of VA-PICA aneurysm developed lower cranial nerve paresis which resolved spontaneously. All the patients were discharged with mRS of 0 or 1. No mortality was recorded in our study. CONCLUSION: Microsurgical clipping of posterior circulation aneurysm is safe in unruptured aneurysm with a very low risk of mortality and morbidity under experienced hands. All postoperative complications in our study were transient and resolved with time with no residual deficits. Preoperative simulation, intraoperative neuromonitoring, DIVA, and neuro endoscope help achieve complete obliteration of aneurysmal sac and avoid complications.

19.
Asian J Neurosurg ; 15(3): 759-762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145249

RESUMEN

Conventionally ventrally located spinal tumor is approached through anterior vertebrectomy which requires bony fixation and then immobilization for a couple of months. The alternative route to deal with such type of tumor is anterolaterally to avoid the surgical and nonsurgical complications. We are reporting a minimally invasive anterolateral approach for C2 neurofibroma in an 84-year-old patient. Postoperatively this patient did not require cervical brace and postoperative discomfort was minimal. It was observed that dumbbell-shaped cervical tumor with no intradural pathology and wide neural foramina could also be taken care through the anterolateral route which did not require bony fusion or immobilization, but the expertise of the surgeon is necessary for performing these types of minimally invasive procedure to achieve the best results.

20.
Asian J Neurosurg ; 15(3): 769-772, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145252

RESUMEN

Middle cerebral aneurysms constitute almost one-third of all anterior circulation aneurysms. Most of the saccular aneurysms originate from the arterial branching sites, but origins other than at the branching site are extremely rare. In this article, we are describing a unique M1 segment middle cerebral artery aneurysm which is not related with any branching site. Our literature search suggests that atherosclerotic changes in the arterial wall and local hemodynamic forces play an important role in the development of these types of aneurysm. Surgical management is not so unique in this type of aneurysm, but due to atherosclerotic parent arterial wall and thin-walled aneurysm sac, a neurosurgeon should be more cautious.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA