RESUMEN
In this study, we used cre-lox techniques to generate mice selectively deficient in ORMDL3 in airway epithelium (Ormdl3Δ2-3/Δ2-3/CC10) to simulate an inhaled therapy that effectively inhibited ORMDL3 expression in the airway. In contrast to the anticipated reduction in airway hyperresponsiveness (AHR), OVA allergen-challenged Ormdl3Δ2-3/Δ2-3/CC10 mice had a significant increase in AHR compared with wild-type mice. Levels of airway inflammation, mucus, fibrosis, and airway smooth muscle were no different in Ormdl3Δ2-3/Δ2-3/CC10 and wild-type mice. However, levels of sphingosine-1-phosphate (S1P) were significantly increased in Ormdl3Δ2-3/Δ2-3/CC10 mice as well as in airway epithelial cells in which ORMDL3 was inhibited with small interfering RNA. Incubation of S1P with airway smooth muscle cells significantly increased contractility. Overall, Ormdl3Δ2-3/Δ2-3/CC10 mice exhibit increased allergen-induced AHR independent of inflammation and associated with increased S1P generation. These studies raise concerns for inhaled therapies that selectively and effectively inhibit ORMDL3 in airway epithelium in asthma.
Asunto(s)
Asma/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Hipersensibilidad Respiratoria/metabolismo , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Lisofosfolípidos/inmunología , Lisofosfolípidos/metabolismo , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Hipersensibilidad Respiratoria/inmunología , Esfingosina/análogos & derivados , Esfingosina/inmunología , Esfingosina/metabolismoRESUMEN
Orosomucoid-like (ORMDL)3 has been strongly linked with asthma in genetic association studies. Because allergen challenge induces lung ORMDL3 expression in wild-type mice, we have generated human ORMDL3 zona pellucida 3 Cre (hORMDL3(zp3-Cre)) mice that overexpress human ORMDL3 universally to investigate the role of ORMDL3 in regulating airway inflammation and remodeling. These hORMDL3(zp3-Cre) mice have significantly increased levels of airway remodeling, including increased airway smooth muscle, subepithelial fibrosis, and mucus. hORMDL3(zp3-Cre) mice had spontaneously increased airway responsiveness to methacholine compared to wild-type mice. This increased airway remodeling was associated with selective activation of the unfolded protein response pathway transcription factor ATF6 (but not Ire1 or PERK). The ATF6 target gene SERCA2b, implicated in airway remodeling in asthma, was strongly induced in the lungs of hORMDL3(zp3-Cre) mice. Additionally, increased levels of expression of genes associated with airway remodeling (TGF-ß1, ADAM8) were detected in airway epithelium of these mice. Increased levels of airway remodeling preceded increased levels of airway inflammation in hORMDL3(zp3-Cre) mice. hORMDL3(zp3-Cre) mice had increased levels of IgE, with no change in levels of IgG, IgM, and IgA. These studies provide evidence that ORMDL3 plays an important role in vivo in airway remodeling potentially through ATF6 target genes such as SERCA2b and/or through ATF6-independent genes (TGF-ß1, ADAM8).
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/genética , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Asma/genética , Asma/inmunología , Proteínas de la Membrana/genética , Factor de Transcripción Activador 6/metabolismo , Alérgenos/inmunología , Animales , Especificidad de Anticuerpos/inmunología , Asma/patología , Hiperreactividad Bronquial/inducido químicamente , Quimiocinas CC/metabolismo , Quimiocinas CXC/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Eosinófilos/metabolismo , Expresión Génica , Orden Génico , Marcación de Gen , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Cloruro de Metacolina/administración & dosificación , Ratones , Ratones Transgénicos , Ovalbúmina/inmunología , Células Th2/inmunología , Células Th2/metabolismo , Transgenes , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismoRESUMEN
Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6-deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma.
Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Factor de Transcripción Activador 6/metabolismo , Quimiocinas/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Metaloproteasas/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Factor de Transcripción Activador 6/genética , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Quimiocinas/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Interleucina-13/farmacología , Interleucina-4/farmacología , Pulmón/citología , Proteínas de la Membrana/genética , Metaloproteasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/farmacología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genéticaRESUMEN
The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Cricetinae , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Células 3T3 NIH , Transducción de Señal , Tapsigargina/farmacologíaRESUMEN
The unfolded protein response (UPR) is induced by proteotoxic stress of the endoplasmic reticulum (ER). Here we report that ATF6, a major mammalian UPR sensor, is also activated by specific sphingolipids, dihydrosphingosine (DHS) and dihydroceramide (DHC). Single mutations in a previously undefined transmembrane domain motif that we identify in ATF6 incapacitate DHS/DHC activation while still allowing proteotoxic stress activation via the luminal domain. ATF6 thus possesses two activation mechanisms: DHS/DHC activation and proteotoxic stress activation. Reporters constructed to monitor each mechanism show that phenobarbital-induced ER membrane expansion depends on transmembrane domain-induced ATF6. DHS/DHC addition preferentially induces transcription of ATF6 target lipid biosynthetic and metabolic genes over target ER chaperone genes. Importantly, ATF6 containing a luminal achromatopsia eye disease mutation, unresponsive to proteotoxic stress, can be activated by fenretinide, a drug that upregulates DHC, suggesting a potential therapy for this and other ATF6-related diseases including heart disease and stroke.
Asunto(s)
Factor de Transcripción Activador 6/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 6/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fenretinida/farmacología , Humanos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Transcripción Genética/efectos de los fármacosRESUMEN
Activation of the IRE1α-XBP1 branch of the unfolded protein response (UPR) has been implicated in multiple types of human cancers, including multiple myeloma (MM). Through an in silico drug discovery approach based on protein-compound virtual docking, we identified the anthracycline antibiotic doxorubicin as an in vitro and in vivo inhibitor of XBP1 activation, a previously unknown activity for this widely utilized cancer chemotherapeutic drug. Through a series of mechanistic and phenotypic studies, we showed that this novel activity of doxorubicin was not due to inhibition of topoisomerase II (Topo II). Consistent with its inhibitory activity on the IRE1α-XBP1 branch of the UPR, doxorubicin displayed more potent cytotoxicity against MM cell lines than other cancer cell lines that have lower basal IRE1α-XBP1 activity. In addition, doxorubicin significantly inhibited XBP1 activation in CD138(+) tumor cells isolated from MM patients. Our findings suggest that the UPR-modulating activity of doxorubicin may be utilized clinically to target IRE1α-XBP1-dependent tumors such as MM.
Asunto(s)
Doxorrubicina/farmacología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/química , Etopósido/química , Etopósido/farmacología , Humanos , Empalme del ARN/genética , Inhibidores de Topoisomerasa/farmacologíaRESUMEN
Using a luciferase reporter-based high-throughput chemical library screen and topological data analysis, we identified N-acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an inhibitor of the inositol requiring kinase 1α (IRE1α)-X-box binding protein-1 (XBP1) pathway of the unfolded protein response. We designed a collection of analogues based on the structure of DAPA to explore structure-activity relationships and identified N(9)-(3-(dimethylamino)propyl)-N(3),N(3),N(6),N(6)-tetramethylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethylamino substitution on the chromophore, as a potent inhibitor. 3,6-DMAD inhibited both IRE1α oligomerization and in vitro endoribonuclease (RNase) activity, whereas the other analogues only blocked IRE1α oligomerization. Consistent with the inhibition of IRE1α-mediated XBP1 splicing, which is critical for multiple myeloma cell survival, these analogues were cytotoxic to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhibited XBP1 splicing in vivo and the growth of multiple myeloma tumor xenografts. Our study not only confirmed the utilization of topological data analysis in drug discovery but also identified a class of compounds with a unique mechanism of action as potent IRE1α-XBP1 inhibitors in the treatment of multiple myeloma. Mol Cancer Ther; 15(9); 2055-65. ©2016 AACR.
Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Endorribonucleasas/metabolismo , Mieloma Múltiple/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Endorribonucleasas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mieloma Múltiple/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 de Unión a la X-Box/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
An evolutionarily conserved unfolded protein response (UPR) component, IRE1, cleaves XBP1/HAC1 introns in order to generate spliced mRNAs that are translated into potent transcription factors. IRE1 also cleaves endoplasmic-reticulum-associated RNAs leading to their decay, an activity termed regulated IRE1-dependent decay (RIDD); however, the mechanism by which IRE1 differentiates intron cleavage from RIDD is not well understood. Using in vitro experiments, we found that IRE1 has two different modes of action: XBP1/HAC1 is cleaved by IRE1 subunits acting cooperatively within IRE1 oligomers, whereas a single subunit of IRE1 performs RIDD without cooperativity. Furthermore, these distinct activities can be separated by complementation of catalytically inactive IRE1 RNase and mutations at oligomerization interfaces. Using an IRE1 RNase inhibitor, STF-083010, selective inhibition of XBP1 splicing indicates that XBP1 promotes cell survival, whereas RIDD leads to cell death, revealing modulation of IRE1 activities as a drug-development strategy.
Asunto(s)
Biocatálisis , Proteínas de Unión al ADN/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Estabilidad del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Muerte Celular , Linaje de la Célula , Endorribonucleasas , Glicoproteínas de Membrana/química , Ratones , Modelos Moleculares , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , ARN de Hongos/metabolismo , Factores de Transcripción del Factor Regulador X , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Especificidad por Sustrato , Proteína 1 de Unión a la X-BoxRESUMEN
NF-κB, a transcription factor, becomes activated during the Unfolded Protein Response (UPR), an endoplasmic reticulum (ER) stress response pathway. NF-κB is normally held inactive by its inhibitor, IκBα. Multiple cellular pathways activate IKK (IκBα Kinase) which phosphorylate IκBα leading to its degradation and NF-κB activation. Here, we find that IKK is required for maximum activation of NF-κB in response to ER stress. However, unlike canonical NFκB activation, IKK activity does not increase during ER stress, but rather the level of basal IKK activity is critical for determining the extent of NF-κB activation. Furthermore, a key UPR initiator, IRE1, acts to maintain IKK basal activity through IRE1's kinase, but not RNase, activity. Inputs from IRE1 and IKK, in combination with translation repression by PERK, another UPR initiator, lead to maximal NF-κB activation during the UPR. These interdependencies have a significant impact in cancer cells with elevated IKK/NF-κB activity such as renal cell carcinoma cells (786-0). Inhibition of IKK by an IKK inhibitor, which significantly decreases NF-κB activity, is overridden by UPR induction, arguing for the importance of considering UPR activation in cancer treatment.