Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 60(1): 175-184, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337147

RESUMEN

Removal of rare earth elements (REEs) from industrial wastewater is a continual challenge. To date, several approaches to the synthesis of nanoadsorbants for this application have been reported, although these are characterized by insufficient adsorption capacity and limitations in cycling stability. The present work reports the fabrication and performance of hierarchical hybrid transition metal oxide (TMO) nanowires deposited on carbon fibers. An ordered assembly of hybrid TMO nanowires exhibits an outstanding adsorbance of 1000 mg·g-1 of REEs with 93% recyclability. This superior performance is attributed to the unique mesoporous architecture of the nanowires, which exhibits a high surface area of 122 cm3·g-1. Further, rapid adsorption/desorption of the REEs reveals minimal morphological alteration and hence high structural stability of these hybrid TMO nanowires after multiple cycles. The ready accessibility of the adsorption sites at crystallite boundaries and the surfaces as well as rapid adsorption of the REEs on the mesoporous nanostructure facilitate considerable adsorption capacity, improved structural stability, and extended cyclability, all of which suggest the potential for this material in REE extraction.

2.
ACS Appl Bio Mater ; 6(4): 1515-1524, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36933270

RESUMEN

While polyelemental alloys are shown to be promising for healthcare applications, their effectiveness in promoting bacterial growth remains unexplored. In the present work, we evaluated the interaction of polyelemental glycerolate particles (PGPs) with Escherichia coli (E. coli) bacteria. PGPs were synthesized using the solvothermal route, and nanoscale random distribution of metal cations in the glycerol matrix of PGPs was confirmed. We observed 7-fold growth of E. coli bacteria upon 4 h of interaction with quinary glycerolate (NiZnMnMgSr-Gly) particles in comparison to control E. coli bacteria. Nanoscale microscopic studies on bacteria interactions with PGPs showed the release of metal cations in the bacterium cytoplasm from PGPs. The electron microscopy imaging and chemical mapping indicated bacterial biofilm formation on PGPs without causing significant cell membrane damage. The data showed that the presence of glycerol in PGPs is effective in controlling the release of metal cations, thus preventing bacterial toxicity. The presence of multiple metal cations is expected to provide synergistic effects of nutrients needed for bacterial growth. The present work provides key microscopic insights of mechanisms by which PGPs enhance biofilm growth. This study opens the door for future applications of PGPs in areas where bacterial growth is essential including healthcare, clean energy, and the food industry.


Asunto(s)
Escherichia coli , Glicerol , Glicerol/farmacología , Membrana Celular , Aleaciones
3.
J Colloid Interface Sci ; 641: 643-652, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963257

RESUMEN

High-entropy materials have received notable attention concern on account of their unique structure, tunable properties, and unprecedented potential applications in many fields. In this work, for the first time a NiCoMnZnMg-containing high-entropy glycerolate (HE-Gly) particles has been synthesized using a scalable solvothermal method. The HE-Gly particles were used as a precursor in design of porous high-entropy oxide (HEO) microparticles. The morphological and structural characterizations demonstrate that the temperature of the annealing process, and the composition of the metal ions in the HE-Gly precursors play important roles in determining porosity, crystallinity, and phase separation in HEOs. In fact, HE-Gly exhibited a porous structure of spinel HEOs with secreted MgO phase after annealing process at 800 °C, while the annealing process at 400 °C led to a low-crystallinity spinel phase without phase segregation. Overall, this work describes HE-Gly as a new precursor for altering the composition, crystallinity, and porosity of HEOs. This strategy is scalable for potential high mass productions, paving a new path toward industrial application of high-entropy materials.

4.
Nat Commun ; 12(1): 5067, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417447

RESUMEN

An overarching challenge of the electrochemical carbon dioxide reduction reaction (eCO2RR) is finding an earth-abundant, highly active catalyst that selectively produces hydrocarbons at relatively low overpotentials. Here, we report the eCO2RR performance of two-dimensional transition metal carbide class of materials. Our results indicate a maximum methane (CH4) current density of -421.63 mA/cm2 and a CH4 faradic efficiency of 82.7% ± 2% for di-tungsten carbide (W2C) nanoflakes in a hybrid electrolyte of 3 M potassium hydroxide and 2 M choline-chloride. Powered by a triple junction photovoltaic cell, we demonstrate a flow electrolyzer that uses humidified CO2 to produce CH4 in a 700-h process under one sun illumination with a CO2RR energy efficiency of about 62.3% and a solar-to-fuel efficiency of 20.7%. Density functional theory calculations reveal that dissociation of water, chemisorption of CO2 and cleavage of the C-O bond-the most energy consuming elementary steps in other catalysts such as copper-become nearly spontaneous at the W2C surface. This results in instantaneous formation of adsorbed CO-an important reaction intermediate-and an unlimited source of protons near the tungsten surface sites that are the main reasons for the observed superior activity, selectivity, and small potential.

5.
Adv Mater ; 32(50): e2004028, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33169392

RESUMEN

The main drawbacks of today's state-of-the-art lithium-air (Li-air) batteries are their low energy efficiency and limited cycle life due to the lack of earth-abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3 P) nanoparticles with an exceptional activity-ORR and OER current densities of 7.21 and 6.85 mA cm-2 at 2.0 and 4.2 V versus Li/Li+ , respectively-in an oxygen-saturated non-aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance-Tafel slopes of 35 and 38 mV dec-1 for ORR and OER, respectively-resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li-air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3 P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA