Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Exp Nephrol ; 28(7): 599-607, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38587753

RESUMEN

The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.


Asunto(s)
Albuminuria , Claudina-1 , Nefropatías Diabéticas , Epigénesis Genética , NAD , Sirtuina 1 , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Humanos , Albuminuria/genética , Claudina-1/genética , Claudina-1/metabolismo , Citocinas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , Mononucleótido de Nicotinamida/farmacología , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Podocitos/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética
2.
J Am Soc Nephrol ; 34(8): 1343-1365, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199399

RESUMEN

SIGNIFICANCE STATEMENT: Renal gluconeogenesis plays an important role in the pathogenesis of diabetic nephropathy (DN). Proximal tubular phosphoenolpyruvate carboxykinase1 (PEPCK1) is the rate-limiting enzyme in gluconeogenesis. However, the functions of PEPCK1 have not been elucidated. We describe the novel role of PEPCK1 as a mitoribosomal protector using Pck1 transgenic (TG) mice and knockout mice. Pck1 blocks excessive glycolysis by suppressing the upregulation of excess HK2 (the rate-limiting enzyme of glycolysis). Notably, Pck1 overexpression retains mitoribosomal function and suppresses renal fibrosis. The renal and mitoribosomal protective roles of Pck1 may provide important clues for understanding DN pathogenesis and provide novel therapeutic targets. BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) is part of the gluconeogenesis pathway, which maintains fasting glucose levels and affects renal physiology. PEPCK consists of two isoforms-PEPCK1 and PEPCK2-that the Pck1 and Pck2 genes encode. Gluconeogenesis increases in diabetic nephropathy (DN), escalating fasting and postprandial glucose levels. Sodium-glucose cotransporter-2 inhibitors increase hepatic and renal gluconeogenesis. We used genetically modified mice to investigate whether renal gluconeogenesis and Pck1 activity are renoprotective in DN. METHODS: We investigated the expression of Pck1 in the proximal tubule (PTs) of streptozotocin (STZ)-treated diabetic mice. We studied the phenotypic changes in PT-specific transgenic (TG) mice and PT-specific Pck1 conditional knockout (CKO) mice. RESULTS: The expression of Pck1 in PTs was downregulated in STZ-treated diabetic mice when they exhibited albuminuria. TG mice overexpressing Pck1 had improved albuminuria, concomitant with the mitigation of PT cell apoptosis and deposition of peritubular type IV collagen. Moreover, CKO mice exhibited PT cell apoptosis and type IV collagen deposition, findings also observed in STZ-treated mice. Renal fibrotic changes in CKO mice were associated with increasing defects in mitochondrial ribosomes (mitoribosomes). The TG mice were protected against STZ-induced mitoribosomal defects. CONCLUSION: PCK1 preserves mitoribosomal function and may play a novel protective role in DN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Colágeno Tipo IV , Albuminuria , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Fibrosis , Ratones Noqueados , Glucosa/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928090

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.


Asunto(s)
Nefropatías Diabéticas , Ratones Noqueados , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética
4.
Biochem Biophys Res Commun ; 556: 142-148, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33845306

RESUMEN

The relationship between cellular senescence and fibrosis in the kidney is being elucidated and we have identified it as therapeutic target in recent studies. Chronic kidney disease has also become a lifestyle disease, often developing on the background of hypertension and dyslipidemia. In this study, we clarify the effect of interaction between these two conditions on kidney fibrosis and senescence. Wild type mice (WT), apolipoprotein E-/- mice (ApoEKO), and endothelial nitric oxide synthase (eNOS)-/- ApoE-/- mice (DKO) were obtained by breeding. Unilateral ureteral obstruction (UUO) was performed on 8-10 week old male mice and the degree of renal tubular injury, fibrosis and kidney senescence were evaluated. DKO manifested elevated blood pressure, higher total cholesterol and lower HDL than WT. DKO showed sustained kidney injury molecule-1 protein expression. Kidney fibrosis was significantly higher in ApoEKO and DKO. mRNA expression of genes related to kidney fibrosis was the highest in DKO. The mRNA expression of Zinc-α2-Glycoprotein and heme oxygenase-1 were significantly decreased in DKO. Furthermore, mRNA expression of p53, p21 and p16 were increased both in ApoEKO and DKO, with DKO being the highest. Senescence associated ß-gal positive tubule area was significantly increased in DKO. Increased DNA damage and target of rapamycin-autophagy spatial coupling compartments (TASCCs) formation was found in DKO. Mice with endothelial dysfunction and dyslipidemia developed kidney fibrosis and accelerated senescence even in young mice after injury. These data highlight the fact managing lifestyle-related diseases from a young age is important for CKD prevention.


Asunto(s)
Apolipoproteínas E/deficiencia , Senescencia Celular/genética , Fibrosis/genética , Eliminación de Gen , Riñón/patología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Insuficiencia Renal Crónica/genética , Animales , Apolipoproteínas E/genética , Autofagia , Presión Sanguínea , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Daño del ADN/genética , Genes p16 , Genes p53 , Humanos , Riñón/lesiones , Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Am J Physiol Endocrinol Metab ; 316(3): E418-E431, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601699

RESUMEN

Diabetic nephropathy (DN) causes mesangial matrix expansion, which results in glomerulosclerosis and renal failure. Collagen IV (COL4) is a major component of the mesangial matrix that is positively regulated by bone morphogenetic protein 4 (BMP4)/suppressor of mothers against decapentaplegic (Smad1) signaling. Because previous studies showed that retinoids treatment had a beneficial effect on kidney disease, we investigated the therapeutic potential of retinoids in DN, focusing especially on the regulatory mechanism of BMP4. Diabetes was induced with streptozotocin in 12-wk-old male Crl:CD1(ICR) mice, and, 1 mo later, we initiated intraperitoneal injection of all-trans retinoic acid (ATRA) three times weekly. Glomerular matrix expansion, which was associated with increased BMP4, phosphorylated Smad1, and COL4 expression, worsened in diabetic mice at 24 wk of age. ATRA administration alleviated DN and downregulated BMP4, phosopho-Smad1, and COL4. In cultured mouse mesangial cells, treatment with ATRA or a retinoic acid receptor-α (RARα) agonist significantly decreased BMP4 and COL4 expression. Genomic analysis suggested two putative retinoic acid response elements (RAREs) for the mouse Bmp4 gene. Chromatin immunoprecipitation analysis and reporter assays indicated a putative RARE of the Bmp4 gene, located 11,488-11,501 bp upstream of exon 1A and bound to RARα and retinoid X receptor (RXR), which suppressed BMP4 expression after ATRA addition. ATRA suppressed BMP4 via binding of a RARα/RXR heterodimer to a unique RARE, alleviating glomerular matrix expansion in diabetic mice. These findings provide a novel regulatory mechanism for treatment of DN.


Asunto(s)
Proteína Morfogenética Ósea 4/efectos de los fármacos , Colágeno Tipo IV/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Células Mesangiales/efectos de los fármacos , Tretinoina/farmacología , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Mesangiales/metabolismo , Ratones , Elementos de Respuesta , Receptor alfa de Ácido Retinoico/agonistas , Receptores X Retinoide/metabolismo , Proteína Smad1/efectos de los fármacos , Proteína Smad1/genética , Proteína Smad1/metabolismo
7.
J Am Soc Nephrol ; 28(10): 2879-2885, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28701517

RESUMEN

Human glomerular diseases can be caused by several different diseases, many of which include mesangial expansion and/or proliferation followed by glomerulosclerosis. However, molecular mechanisms underlying the pathologic mesangial changes remain poorly understood. Here, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1)-S6 kinase pathway in mesangial expansion and/or proliferation by ablating an upstream negative regulator, tuberous sclerosis complex 1 (TSC1), using tamoxifen-induced Foxd1-Cre mice [Foxd1ER(+) TSC1 mice]. Foxd1ER(+) TSC1 mice showed mesangial expansion with increased production of collagen IV, collagen I, and α-smooth muscle actin in glomeruli, but did not exhibit significant mesangial proliferation or albuminuria. Furthermore, rapamycin treatment of Foxd1ER(+) TSC1 mice suppressed mesangial expansion. Among biopsy specimens from patients with glomerular diseases, analysis of phosphorylated ribosomal protein S6 revealed mesangial cell mTORC1 activation in IgA nephropathy and in lupus mesangial proliferative nephritis but not in the early phase of diabetic nephropathy. In summary, mesangial cell mTORC1 activation can cause mesangial expansion and has clinical relevance for human glomerular diseases. This report also confirms that the tamoxifen-induced mesangium-specific Cre-loxP system is useful for studies designed to clarify the role of the mesangium in glomerular diseases in adults.


Asunto(s)
Enfermedades Renales/enzimología , Células Mesangiales/enzimología , Complejos Multiproteicos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Transgénicos
8.
Endocr J ; 64(Suppl.): S47-S51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28652544

RESUMEN

Chronic kidney disease (CKD) impairs physical performance in humans, which leads to a risk of all-cause mortality. In our previous study, we demonstrated that a reduction in muscle mitochondria rather than muscle mass was a major cause of physical decline in 5/6 nephrectomized CKD model mice. Because ghrelin administration has been reported to enhance oxygen utilization in skeletal muscle, we examined the usefulness of ghrelin for a recovery of physical decline in 5/6 nephrectomized C57Bl/6 mice, focusing on the epigenetic modification of peroxisome proliferator activated receptor gamma coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. The mice were intraperitoneally administered acylated ghrelin (0.1 nmol/gBW; three times per week) for a month. Muscle strength and exercise endurance were measured by using a dynamometer and treadmill, respectively. Mitochondrial DNA copy number was determined by quantitative PCR. The methylation levels of the cytosine residue at 260 base pairs upstream of the translation initiation point (C-260) of PGC-1α, which has been demonstrated to decrease the expression, was evaluated by methylation-specific PCR and bisulfite genomic sequencing methods after the ghrelin administration. Ghrelin administration improved both muscle strength and exercise endurance in the mice and was associated with an increase in muscle mass and muscle mitochondrial content. Ghrelin administration decreased the methylation ratio of C-260 of PGC-1α in the skeletal muscle and increased the expression. Therefore, ghrelin administration effectively reduced the physical decline in 5/6 nephrectomized mice and was accompanied with an increased mitochondrial content through de-methylation of the promoter region of PGC-1α in the muscle.


Asunto(s)
Ghrelina/uso terapéutico , Mitocondrias Musculares/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Sarcopenia/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Ratones , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Nefrectomía , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Resistencia Física/efectos de los fármacos , Sarcopenia/metabolismo , Sarcopenia/fisiopatología
9.
BMC Nephrol ; 18(1): 261, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774276

RESUMEN

BACKGROUND: Immunoglobulin G4-related kidney disease characterized by immunoglobulin G4-positive plasma cell-rich tubulointerstitial nephritis has distinctive serological and radiological findings. Renal prognosis is good because of a good response to glucocorticoids. Here we report a case of successful treatment of highly advanced immunoglobulin G4-related kidney disease presenting renal mass-like regions with end-stage kidney failure. CASE PRESENTATION: A 59-year-old Japanese man was referred to our hospital because of uremia with a creatinine level of 12.36 mg/dL. Urinalysis revealed mild proteinuria and hyperß2microglobulinuria, and blood tests showed hyperglobulinemia with an IgG level of 3243 mg/dL and an IgG4 level of 621 mg/dL. Non-contrast computed tomography revealed renal mass-like regions. Based on the findings, immunoglobulin G4-related kidney disease was suspected, however, further radiological examination showed unexpected results. Ga-67 scintigraphy showed no kidney uptake. T2-weighted magnetic resonance imaging revealed high-intensity signals which corresponded to mass-like regions and multiple patchy low-intensity signals in kidney cortex. Finally, the patient was diagnosed with immunoglobulin G4-related kidney disease by renal pathology of severe immunoglobulin G4-positive plasma cell-rich tubulointerstitial nephritis and characteristic fibrosis. He received 50 mg oral prednisolone, which was tapered with a subsequent decrease of serum creatinine and IgG4 levels. One year after initiation of treatment, he achieved normalization of serum IgG4 level and proteinuria, and remained off dialysis with a creatinine level of 3.50 mg/dL. After treatment with steroids, repeat imaging suggested bilateral severe focal atrophy. However, mass-like regions did not show atrophic change although renal atrophy was evident in patchy low-intensity lesions on T2-weighted magnetic resonance imaging. These findings suggest that multiple patchy low-intensity signals and high-intensity mass-like regions were mildly atrophic lesions of immunoglobulin G4-related kidney disease due to severe fibrosis and normal parts of kidney, respectively. CONCLUSIONS: In immunoglobulin G4-related kidney disease with severe kidney failure, radiological findings should be carefully examined. In addition, renal prognosis may be good despite highly advanced tubulointerstitial nephritis and fibrosis.


Asunto(s)
Inmunoglobulina G/metabolismo , Fallo Renal Crónico/diagnóstico por imagen , Fallo Renal Crónico/metabolismo , Nefritis Intersticial/diagnóstico por imagen , Nefritis Intersticial/metabolismo , Antiinflamatorios/uso terapéutico , Humanos , Inmunoglobulina G/análisis , Fallo Renal Crónico/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Nefritis Intersticial/tratamiento farmacológico , Prednisolona/uso terapéutico , Resultado del Tratamiento
10.
Artif Organs ; 39(7): 627-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25940509

RESUMEN

Prepump arterial pressure (PreAP) is monitored to avoid generating excessive negative pressure. The National Kidney Foundation K/DOQI clinical practice guidelines for vascular access recommend that PreAP should not fall below -250 mm Hg because excessive negative PreAP can lead to a decrease in the delivery of blood flow, inadequate dialysis, and hemolysis. Nonetheless, these recommendations are consistently disregarded in clinical practice and pressure sensors are often removed from the dialysis circuit. Thus far, delivered blood flow has been reported to decrease at values more negative than -150 mm Hg of PreAP. These values have been analyzed by an ultrasonic flowmeter and not directly measured. Furthermore, no known group has evaluated whether PreAP-induced hemolysis occurs at a particular threshold. Therefore, the aim of this study was to clarify the importance of PreAP in the prediction of inadequate dialysis and hemolysis. By using different diameter needles, human blood samples from healthy volunteers were circulated in a closed dialysis circuit. The relationship between PreAP and delivered blood flow or PreAP and hemolysis was investigated. We also investigated the optimal value for PreAP using several empirical monitoring methods, such as a pressure pillow. Our investigation indicated that PreAP is a critical factor in the determination of delivered blood flow and hemolysis, both of which occured at pressure values more negative than -150 mm Hg. With the exception of direct pressure monitoring, commonly used monitoring methods for PreAP were determined to be ineffective. We propose that the use of a vacuum monitor would permit regular measurement of PreAP.


Asunto(s)
Hemólisis , Monitoreo Fisiológico , Diálisis Renal , Adulto , Anciano , Presión Arterial , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Diálisis Renal/efectos adversos , Diálisis Renal/instrumentación , Diálisis Renal/métodos
11.
Kidney Int ; 85(6): 1330-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24284514

RESUMEN

Chronic kidney disease impairs physical performance. Here the time course and mechanism of muscle insufficiency in renal failure and the influence of dietary protein were studied using 5/6 nephrectomized C57Bl/6 mice, focusing on muscle mass and mitochondria. A decrease in muscle mitochondria and running distance was found in young (16-20 weeks) 5/6 nephrectomized mice, despite the preservation of muscle volume and power. However, a decrease in muscle volume, associated with a reduction in muscle power, was found in aged (48-52 weeks) 5/6 nephrectomized mice. A high-protein diet feeding from 8 weeks increased muscle volume and power in the mice; but this further decreased running distance. Activation of pyruvate dehydrogenase by dichloroacetate effectively recovered running distance that was decreased by dietary protein. These findings indicate the mechanism of muscle insufficiency in renal failure and suggest that activation of muscle mitochondria would serve as a potential strategy for improving the physical performance of the patients with chronic kidney disease.


Asunto(s)
Proteínas en la Dieta/efectos adversos , Tolerancia al Ejercicio , Mitocondrias Musculares/enzimología , Recambio Mitocondrial , Músculo Esquelético/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Insuficiencia Renal Crónica/enzimología , Animales , Citocinas/metabolismo , Ácido Dicloroacético/farmacología , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Activadores de Enzimas/farmacología , Tolerancia al Ejercicio/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Recambio Mitocondrial/efectos de los fármacos , Fuerza Muscular , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Estrés Oxidativo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/terapia , Carrera , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
12.
Sci Rep ; 14(1): 16313, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009630

RESUMEN

In 67Ga-citrate scintigraphy (Ga-S), visual assessment is used by evaluating renal-uptake comparison with liver and spine and is simple and objective. We adopted the standardized uptake value (SUV) for 67Ga-citrate and proposed two quantitative indices, active nephritis volume (ANV) and total nephritis uptake (TNU). This study clarified the utility of new Ga-S-based quantitative indices in nephritis management. Before SUV measurement, the Becquerel calibration factor of 67Ga-citrate was obtained using a phantom experiment. Seventy patients who underwent SPECT/CT imaging were studied. SUV, ANV, and TNU were calculated using a quantitative analysis software for bone SPECT. SUVmean, ANV, and TNU were analyzed using the (1) threshold method (set 40%) and constant-value method for (2) vertebral SUVmax, and (3) vertebral SUVmean. ROC analysis was used to evaluate SUV, ANV, and TNU diagnostic abilities to distinguish nephritis presence and absence as well as interstitial nephritis (IN) and non-IN. The area under the curve (AUC) for nephritis presence or absence had a good value (0.80) for SUVmean (1), ANV (3), and TNU (3). The AUC for differentiation between IN and non-IN groups had a good value (0.80) for SUVmean (1). Thus, the new Ga-S-based quantitative indices were useful to evaluate nephritis and distinguish IN and non-IN.


Asunto(s)
Radioisótopos de Galio , Galio , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Nefritis/diagnóstico por imagen , Citratos , Curva ROC , Anciano de 80 o más Años , Radiofármacos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos
13.
Am J Physiol Endocrinol Metab ; 305(7): E776-84, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23880314

RESUMEN

Loss of physical performance is linked not only to decreased activity in daily life but also to increased onset of cardiovascular diseases and mortality. A high-protein diet is recommended for aged individuals in order to preserve muscle mass; however, the regulation of muscle mitochondria by dietary protein has not been clarified. We investigated the long-term effects of a high-protein diet on muscle properties, focusing especially on muscle mitochondria. Mice were fed a high-protein diet from the age of 8 wk and examined for mitochondrial properties and exercise endurance at the ages of 20 and 50 wk. Compared with normal chow, a high-protein diet significantly decreased the amount of muscle mitochondria, mitochondrial activity, and running distance at 50 wk, although it increased muscle mass and grip power. Inhibition of TORC1-dependent signal pathways by rapamycin from 8 wk suppressed the decline in mitochondria and exercise endurance observed when mice were fed the high-protein diet in association with preserved AMPK activity. Collectively, these findings suggest a role for dietary protein as a suppressor of muscle mitochondria and indicate that the age-associated decline in exercise endurance might be accelerated by excessive dietary protein through rapamycin-sensitive suppression of muscle mitochondria.


Asunto(s)
Proteínas en la Dieta/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Animales , Línea Celular , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Fuerza de la Mano/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Músculo Esquelético/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
14.
Sci Rep ; 12(1): 13712, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962139

RESUMEN

The activation of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, Sirt1, after the administration of nicotinamide mononucleotide (NMN) suppresses many diseases. However, the role of NMN and Sirt1 in focal glomerulosclerosis (FSGS) has not yet been elucidated. This study aimed to assess the protective effect of NMN treatment in mice with adriamycin (ADR)-induced FSGS. Transient short-term NMN treatment was administered to 8-week-old ADR- or saline-treated BALB/c mice (Cont group) for 14 consecutive days. NMN alleviated the increase in urinary albumin excretion in the ADR-treated mice. NMN treatment mitigated glomerulosclerosis and ameliorated the reduced Sirt1 expression and elevated Claudin-1 expression in the kidneys of the mice. Moreover, this treatment improved the decrease in histone methylation and the expression level of Dnmt1 and increased the concentration of NAD+ in the kidney. Dnmt1 epigenetically suppressed the expression of the NMN-consuming enzyme nicotinamide mononucleotide adenyltransferase1 (Nmnat1) by methylating the E-box in the promoter region and repressing the NAD-consuming enzyme PARP1. Additionally, NMN downregulated the expression of Nmnat1 in the ADR-treated mice. Short-term NMN treatment in FSGS has epigenetic renal protective effects through the upregulation of Sirt1 and suppression of the NAD and NMN consumers. The present study presents a novel treatment paradigm for FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Doxorrubicina/toxicidad , Riñón/metabolismo , Ratones , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
15.
Sci Rep ; 11(1): 21643, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737348

RESUMEN

p16 inhibits cyclin-dependent kinases and regulates senescence-mediated arrest as well as p21. Nuclear p16 promotes G1 cell cycle arrest and cellular senescence. In various glomerular diseases, nuclear p16 expression is associated with disease progression. Therefore, the location of p16 is important. However, the mechanism of p16 trafficking between the nucleus and cytoplasm is yet to be fully investigated. TGF-ß1, a major cytokine involved in the development of kidney diseases, can upregulate p21 expression. However, the relationship between TGF-ß1 and p16 is poorly understood. Here, we report the role of podocyte TGF-ß1 in regulating the p16 behavior in glomerular endothelial cells. We analyzed podocyte-specific TGF-ß1 overexpression mice. Although p16 was found in the nuclei of glomerular endothelial cells and led to endothelial cellular senescence, the expression of p16 did not increase in glomeruli. In cultured endothelial cells, TGF-ß1 induced nuclear translocation of p16 without increasing its expression. Among human glomerular diseases, p16 was detected in the nuclei of glomerular endothelial cells. In summary, we demonstrated the novel role of podocyte TGF-ß1 in managing p16 behavior and cellular senescence in glomeruli, which has clinical relevance for the progression of human glomerular diseases.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Senescencia Celular/fisiología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Células Endoteliales/metabolismo , Femenino , Genes p16/fisiología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos ICR , Podocitos/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
16.
Intern Med ; 60(19): 3129-3136, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33840699

RESUMEN

Tubulointerstitial nephritis (TIN) with IgM-positive plasma cells (IgMPC-TIN) is an autoimmune kidney disease characterized by IgM/CD138-double-positive plasma cell infiltration in the tubulointerstitium. A 50-year-old man developed IgMPC-TIN and presented with crystalline inclusions in the rough endoplasmic reticulum. Intracellular crystal formation is a rare finding in paraprotein-related kidney diseases, but this case showed no pathogenic monoclonal immunoglobulin. Prednisolone (PSL, 30 mg) improved the TIN, but PSL tapering resulted in the recurrence of TIN. Combination therapy with 15 mg PSL and 150 mg mizoribine ultimately stabilized TIN. This case offers original evidence concerning the pathophysiology and treatment strategy of IgMPC-TIN.


Asunto(s)
Nefritis Intersticial , Células Plasmáticas , Retículo Endoplásmico Rugoso , Glucocorticoides , Humanos , Inmunoglobulina M , Masculino , Persona de Mediana Edad
18.
J Med Invest ; 67(3.4): 315-320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33148908

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) develops into end-stage kidney disease by 65 years of age in an estimated 45%-70% of patients. Recent trials revealed that tolvaptan inhibits disease progression both in early-stage or late-stage ADPKD ; however, stratified analysis showed a difference of favorable factors correlated with tolvaptan efficacy between early-stage and late-stage ADPKD. Thus, we examined the efficacy of tolvaptan in ADPKD with a wide range of estimated glomerular filtration rates (eGFR). We enrolled 24 patients with eGFR 35.3 (28.0-65.5) ml / min / 1.73m2 and evaluated treatment effect as ΔΔeGFR (ml / min / 1.73m2 / year) or ΔΔtotal kidney volume (TKV) (% / year) that was calculated as post-treatment annual change - pre-treatment annual change. Pre ΔeGFR was significantly low in eGFR responders, defined as ΔΔeGFR > 0 ml / min / 1.73m2 / year. In eGFR responders, pre ΔeGFR, post ΔeGFR, eGFR, TKV, and proteinuria were significantly correlated with ΔΔeGFR. In TKV responders defined as ΔΔTKV > 5 % / year, we identified hypertension history, proteinuria, TKV, and post ΔTKV as significantly correlated factors with ΔΔTKV. In conclusion, pre ΔeGFR may be a predictive factor of therapeutic efficacy on kidney function. Tolvaptan may have greater efficacy in early-stage ADPKD with rapid GFR decline or with well-controlled blood pressure. J. Med. Invest. 67 : 315-320, August, 2020.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Tolvaptán/uso terapéutico , Adulto , Femenino , Tasa de Filtración Glomerular , Humanos , Riñón/patología , Masculino , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/fisiopatología
20.
JCI Insight ; 4(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31723053

RESUMEN

Although oxidative stress plays central roles in postischemic renal injury, region-specific alterations in energy and redox metabolism caused by short-duration ischemia remain unknown. Imaging mass spectrometry enabled us to reveal spatial heterogeneity of energy and redox metabolites in the postischemic murine kidney. After 10-minute ischemia and 24-hour reperfusion (10mIR), in the cortex and outer stripes of the outer medulla, ATP substantially decreased, but not in the inner stripes of the outer medulla and inner medulla. 10mIR caused renal injury with elevation of fractional excretion of sodium, although histological damage by oxidative stress was limited. Ischemia-induced NADH elevation in the cortex indicated prolonged production of reactive oxygen species by xanthine oxidase (XOD). However, consumption of reduced glutathione after reperfusion suggested the amelioration of oxidative stress. An XOD inhibitor, febuxostat, which blocks the degradation pathway of adenine nucleotides, promoted ATP recovery and exerted renoprotective effects in the postischemic kidney. Because effects of febuxostat were canceled by silencing of the hypoxanthine phosphoribosyl transferase 1 gene in cultured tubular cells, mechanisms for the renoprotective effects appear to involve the purine salvage pathway, which uses hypoxanthine to resynthesize adenine nucleotides, including ATP. These findings suggest a novel therapeutic approach for acute ischemia/reperfusion renal injury with febuxostat through salvaging high-energy adenine nucleotides.


Asunto(s)
Lesión Renal Aguda , Nucleótidos de Adenina , Inhibidores Enzimáticos/farmacología , Daño por Reperfusión , Xantina Oxidasa/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Nucleótidos de Adenina/análisis , Nucleótidos de Adenina/metabolismo , Animales , Febuxostat/farmacología , Riñón/química , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA