Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hippocampus ; 30(6): 565-581, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31713968

RESUMEN

α-Thalassemia X-linked intellectual disability (ATR-X) syndrome is a neurodevelopmental disorder caused by mutations in the ATRX gene that encodes a SNF2-type chromatin-remodeling protein. The ATRX protein regulates chromatin structure and gene expression in the developing mouse brain and early inactivation leads to DNA replication stress, extensive cell death, and microcephaly. However, the outcome of Atrx loss of function postnatally in neurons is less well understood. We recently reported that conditional inactivation of Atrx in postnatal forebrain excitatory neurons (ATRX-cKO) causes deficits in long-term hippocampus-dependent spatial memory. Thus, we hypothesized that ATRX-cKO mice will display impaired hippocampal synaptic transmission and plasticity. In the present study, evoked field potentials and current source density analysis were recorded from a multichannel electrode in male, urethane-anesthetized mice. Three major excitatory synapses, the Schaffer collaterals to basal dendrites and proximal apical dendrites, and the temporoammonic path to distal apical dendrites on hippocampal CA1 pyramidal cells were assessed by their baseline synaptic transmission, including paired-pulse facilitation (PPF) at 50-ms interpulse interval, and by their long-term potentiation (LTP) induced by theta-frequency burst stimulation. Baseline single-pulse excitatory response at each synapse did not differ between ATRX-cKO and control mice, but baseline PPF was reduced at the CA1 basal dendritic synapse in ATRX-cKO mice. While basal dendritic LTP of the first-pulse excitatory response was not affected in ATRX-cKO mice, proximal and distal apical dendritic LTP were marginally and significantly reduced, respectively. These results suggest that ATRX is required in excitatory neurons of the forebrain to achieve normal hippocampal LTP and PPF at the CA1 apical and basal dendritic synapses, respectively. Such alterations in hippocampal synaptic transmission and plasticity could explain the long-term spatial memory deficits in ATRX-cKO mice and provide insight into the physiological mechanisms underlying intellectual disability in ATR-X syndrome patients.


Asunto(s)
Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Prosencéfalo/metabolismo , Sinapsis/metabolismo , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Prosencéfalo/citología , Proteína Nuclear Ligada al Cromosoma X/genética
2.
Cell Rep ; 31(13): 107838, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32610139

RESUMEN

ATRX gene mutations have been identified in syndromic and non-syndromic intellectual disabilities in humans. ATRX is known to maintain genomic stability in neuroprogenitor cells, but its function in differentiated neurons and memory processes remains largely unresolved. Here, we show that the deletion of neuronal Atrx in mice leads to distinct hippocampal structural defects, fewer presynaptic vesicles, and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. We identify male-specific impairments in long-term contextual memory and in synaptic gene expression, linked to altered miR-137 levels. We show that ATRX directly binds to the miR-137 locus and that the enrichment of the suppressive histone mark H3K27me3 is significantly reduced upon the loss of ATRX. We conclude that the ablation of ATRX in excitatory forebrain neurons leads to sexually dimorphic effects on miR-137 expression and on spatial memory, identifying a potential therapeutic target for neurological defects caused by ATRX dysfunction.


Asunto(s)
Eliminación de Gen , Regulación de la Expresión Génica , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , MicroARNs/genética , Caracteres Sexuales , Aprendizaje Espacial , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Animales , Secuencia de Bases , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Condicionamiento Operante , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Genotipo , Histonas/metabolismo , Lisina/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Neuronas , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteína Nuclear Ligada al Cromosoma X/metabolismo
3.
Dis Model Mech ; 10(2): 119-126, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28093507

RESUMEN

The rapid modulation of chromatin organization is thought to play a crucial role in cognitive processes such as memory consolidation. This is supported in part by the dysregulation of many chromatin-remodelling proteins in neurodevelopmental and psychiatric disorders. A key example is ATRX, an X-linked gene commonly mutated in individuals with syndromic and nonsyndromic intellectual disability. The consequences of Atrx inactivation for learning and memory have been difficult to evaluate because of the early lethality of hemizygous-null animals. In this study, we evaluated the outcome of brain-specific Atrx deletion in heterozygous female mice. These mice exhibit a mosaic pattern of ATRX protein expression in the central nervous system attributable to the location of the gene on the X chromosome. Although the hemizygous male mice die soon after birth, heterozygous females survive to adulthood. Body growth is stunted in these animals, and they have low circulating concentrations of insulin growth factor 1. In addition, they are impaired in spatial, contextual fear and novel object recognition memory. Our findings demonstrate that mosaic loss of ATRX expression in the central nervous system leads to endocrine defects and decreased body size and has a negative impact on learning and memory.


Asunto(s)
Sistema Nervioso Central/patología , Trastornos de la Memoria/fisiopatología , Mosaicismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Animales , Peso Corporal , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Miedo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Crecimiento y Desarrollo , Fuerza de la Mano , Heterocigoto , Miembro Posterior/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/sangre , Trastornos de la Memoria/genética , Memoria a Corto Plazo , Ratones , Actividad Motora , Fenotipo , Memoria Espacial , Análisis de Supervivencia , Proteína Nuclear Ligada al Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA