Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Spine J ; 32(10): 3387-3393, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37584697

RESUMEN

BACKGROUND: Abdominal aortic calcification (AAC) is associated with lower back pain, reduced bone mineral density of the spine. Vascular changes could also affect the already sparsely perfused intervertebral endplate and intervertebral disc. METHODS: Lumbar MRIs and lateral radiographs of patients with lower back pain were retrospectively analyzed. AAC was assessed on lateral lumbar radiographs according to the Kauppila score, with a maximum score of 24. Patients were grouped into no (AAC = 0), moderate (AAC 1 to ≤ 4), and severe AAC (AAC ≥ 5). Endplate and disc degeneration were classified according to the total endplate score (TEPS) and Pfirrmann classification. The associations between AAC and degenerative changes was analyzed with a generalized mixed model and was adjusted for age, sex, body mass index as well as diabetes mellitus, and smoking status. RESULTS: A total of 217 patients (47.9% female) were included in the analysis, totaling 1085 intervertebral levels. Of those, 45 (20.7%) patients had moderate, and 39 (18%) had severe AAC. The results of the generalized mixed model showed no significant association between AAC and disc degeneration (p > 0.05). In contrast, a significant positive association between AAC and the severity of TEPS (ß: 0.51, 95% CI: 1.92-2.12, p = 0.004) was observed in the multivariable analysis. CONCLUSIONS: This study demonstrates an independent association between AAC and endplate degeneration. These findings expand our knowledge about the degenerative cascade of the lumbar spine and suggest that AAC might be a modifiable risk factor for endplate changes.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Femenino , Masculino , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/complicaciones , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/etiología , Estudios Retrospectivos , Región Lumbosacra , Vértebras Lumbares/diagnóstico por imagen
2.
Eur Spine J ; 32(9): 3002-3008, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37273032

RESUMEN

BACKGROUND: Aortic abdominal calcification (AAC) is associated with spine-related conditions, such as lower back pain and reduced bone mineral density. Similar to peripheral vascular disease, AAC possibly reduces blood flow to the lumbar posterior paraspinal muscles (PPM) which may lead to atrophy and increased fatty infiltration. METHODS: Imaging of patients with lower back pain was analyzed. AAC was assessed on lateral lumbar radiographs according to the Kauppila classification. The cross-sectional area of the PPM was measured on a T2-weighted axial MRI sequence and the functional cross-sectional area (fCSA) and fatty infiltration (FI) were calculated with custom software. The association of AAC and FI as well as AAC and fCSA was assessed by multivariable linear regression, adjusted for age, sex, body mass index (BMI), diabetes, and smoking. RESULTS: Two hundred and thirty patients (47.8% female) with a median age of 60 years (IQR 48-68) were analyzed. In patients, without AAC the median FI of the PPM was 33.3% (IQR 29.1-37.6%), compared to 44.6% (IQR 38.5-54.3%) in patients with AAC (p < 0.001). In the multivariable linear regression, both fCSA and FI of the PPM were significantly and independently associated with the degree of AAC (p = 0.037 and p = 0.015, respectively). CONCLUSIONS: This is the first study to demonstrate a significant and independent association between AAC and PPM morphology. The results of this study improve our understanding of the interaction between AAC and spinal musculature, with AAC being a reason for atrophy of the PPM.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Estudios Retrospectivos , Estudios Transversales , Músculos Paraespinales/patología , Atrofia/patología , Vértebras Lumbares
3.
Skeletal Radiol ; 52(9): 1781-1784, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36752829

RESUMEN

Beginning in May 2022, monkeypox infection and vaccination rates dramatically increased due to a worldwide outbreak. This case highlights magnetic resonance (MR) neurography findings in an individual who developed Parsonage-Turner syndrome (PTS) 5 days after monkeypox symptom onset and 12 days after receiving the JYNNEOS vaccination. MR neurography of the patient's left suprascapular nerve demonstrated intrinsic hourglass-like constrictions, a characteristic finding of peripheral nerves involved in PTS. Other viral infections and vaccinations are well-documented triggers of PTS, an underrecognized peripheral neuropathy that is thought to be immune-mediated and results in severe upper extremity pain and weakness. The close temporal relationship between monkeypox infection and vaccination, and PTS onset, in this case, suggests a causal relationship and marks the first known report of peripheral neuropathy associated with monkeypox.


Asunto(s)
Neuritis del Plexo Braquial , Mpox , Enfermedades del Sistema Nervioso Periférico , Humanos , Neuritis del Plexo Braquial/etiología , Neuritis del Plexo Braquial/complicaciones , Mpox/complicaciones , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso Periférico/diagnóstico por imagen , Enfermedades del Sistema Nervioso Periférico/etiología , Vacunación/efectos adversos
4.
Skeletal Radiol ; 52(7): 1331-1338, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36602576

RESUMEN

BACKGROUND AND PURPOSE: Three-dimensional (3D) imaging of the spine, augmented with AI-enabled image enhancement and denoising, has the potential to reduce imaging times without compromising image quality or diagnostic performance. This work evaluates the time savings afforded by a novel, rapid lumbar spine MRI protocol as well as image quality and diagnostic differences stemming from the use of an AI-enhanced 3D T2 sequence combined with a single Dixon acquisition. MATERIALS AND METHODS: Thirty-five subjects underwent MRI using standard 2D lumbar imaging in addition to a "rapid protocol" consisting of 3D imaging, enhanced and denoised using a prototype DL reconstruction algorithm as well as a two-point Dixon sequence. Images were graded by subspecialized radiologists and imaging times were collected. Comparison was made between 2D sagittal T1 and Dixon fat images for neural foraminal stenosis, intraosseous lesions, and fracture detection. RESULTS: This study demonstrated a 54% reduction in total acquisition time of a 3D AI-enhanced imaging lumbar spine MRI rapid protocol combined with a sagittal 2D Dixon sequence, compared to a 2D standard-of-care protocol. The rapid protocol also demonstrated strong agreement with the standard-of-care protocol with respect to osseous lesions (κ = 0.88), fracture detection (κ = 0.96), and neural foraminal stenosis (ICC > 0.9 at all levels). CONCLUSION: 3D imaging of the lumbar spine with AI-enhanced DL reconstruction and Dixon imaging demonstrated a significant reduction in imaging time with similar performance for common diagnostic metrics. Although previously limited by long postprocessing times, this technique has the potential to enhance patient throughput in busy radiology practices while providing similar or improved image quality.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Constricción Patológica , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos
5.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688046

RESUMEN

Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.


Asunto(s)
Comercio , Ingeniería , Humanos , Articulación de la Rodilla , Metales , Movimiento
6.
Eur Radiol ; 32(9): 6167-6177, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35322280

RESUMEN

OBJECTIVES: To compare interobserver agreement and image quality of 3D T2-weighted fast spin echo (T2w-FSE) L-spine MRI images processed with a deep learning reconstruction (DLRecon) against standard-of-care (SOC) reconstruction, as well as against 2D T2w-FSE images. The hypothesis was that DLRecon 3D T2w-FSE would afford improved image quality and similar interobserver agreement compared to both SOC 3D and 2D T2w-FSE. METHODS: Under IRB approval, patients who underwent routine 3-T lumbar spine (L-spine) MRI from August 17 to September 17, 2020, with both isotropic 3D and 2D T2w-FSE sequences, were retrospectively included. A DLRecon algorithm, with denoising and sharpening properties was applied to SOC 3D k-space to generate 3D DLRecon images. Four musculoskeletal radiologists blinded to reconstruction status evaluated randomized images for motion artifact, image quality, central/foraminal stenosis, disc degeneration, annular fissure, disc herniation, and presence of facet joint cysts. Inter-rater agreement for each graded variable was evaluated using Conger's kappa (κ). RESULTS: Thirty-five patients (mean age 58 ± 19, 26 female) were evaluated. 3D DLRecon demonstrated statistically significant higher median image quality score (2.0/2) when compared to SOC 3D (1.0/2, p < 0.001), 2D axial (1.0/2, p < 0.001), and 2D sagittal sequences (1.0/2, p value < 0.001). κ ranges (and 95% CI) for foraminal stenosis were 0.55-0.76 (0.32-0.86) for 3D DLRecon, 0.56-0.73 (0.35-0.84) for SOC 3D, and 0.58-0.71 (0.33-0.84) for 2D. Mean κ (and 95% CI) for central stenosis at L4-5 were 0.98 (0.96-0.99), 0.97 (0.95-0.99), and 0.98 (0.96-0.99) for 3D DLRecon, 3D SOC and 2D, respectively. CONCLUSIONS: DLRecon 3D T2w-FSE L-spine MRI demonstrated higher image quality and similar interobserver agreement for graded variables of interest when compared to 3D SOC and 2D imaging. KEY POINTS: • 3D DLRecon T2w-FSE isotropic lumbar spine MRI provides improved image quality when compared to 2D MRI, with similar interobserver agreement for clinical evaluation of pathology. • 3D DLRecon images demonstrated better image quality score (2.0/2) when compared to standard-of-care (SOC) 3D (1.0/2), p value < 0.001; 2D axial (1.0/2), p value < 0.001; and 2D sagittal sequences (1.0/2), p value < 0.001. • Interobserver agreement for major variables of interest was similar among all sequences and reconstruction types. For foraminal stenosis, κ ranged from 0.55 to 0.76 (95% CI 0.32-0.86) for 3D DLRecon, 0.56-0.73 (95% CI 0.35-0.84) for standard-of-care (SOC) 3D, and 0.58-0.71 (95% CI 0.33-0.84) for 2D.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Adulto , Anciano , Constricción Patológica , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
7.
Muscle Nerve ; 63(5): 703-709, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33501678

RESUMEN

INTRODUCTION: In this study, we aimed to determine whether muscle transverse relaxation time (T2 ) magnetic resonance (MR) mapping results correlate with motor unit loss, as defined by motor unit recruitment patterns on electromyography (EMG). METHODS: EMG and 3-Tesla MRI exams were acquired no more than 31 days apart in subjects referred for peripheral nerve MRI. Two musculoskeletal radiologists qualitatively graded T2 -weighted, fat-suppressed sequences for severity of muscle edema-like patterns and manually placed regions of interest within muscles to obtain T2 values from T2 -mapping sequences. Concordance was calculated between qualitative and quantitative MR grades and EMG recruitment categories (none, discrete, decreased) as well as interobserver agreement for both MR grades. RESULTS: Thirty-four muscles (21 abnormal, 13 control) were assessed in 13 subjects (5 females and 8 males; mean age, 46 years) with 14 EMG-MRI pairs. T2 -relaxation times were significantly (P < .001) increased in all EMG recruitment categories compared with control muscles. T2 differences were not significant between EMG grades of motor unit recruitment (P = .151-.702). T2 and EMG score concordance was acceptable (Harrell's concordance index [c index]: rater A, 0.71; 95% confidence interval [CI], 0.51-0.87; rater B, 0.77; 95% CI, 0.57-0.91). Qualitative MRI and EMG score concordance was poor to acceptable (c index: rater A, 0.60; 95% CI, 0.50-0.79; rater B, 0.72; 95% CI, 0.55-0.89). T2 values had moderate-to-substantial ability to distinguish between absent vs incomplete (ie, decreased or discrete) motor unit recruitment (c index: rater A, 0.78; 95% CI, 0.50-1.00; rater B, 0.86; 95% CI, 0.57-1.00). DISCUSSION: Quantitative T2 MR muscle mapping is a promising tool for noninvasive evaluation of the degree of motor unit recruitment loss.


Asunto(s)
Electromiografía/métodos , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Nervios Periféricos/diagnóstico por imagen , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Reclutamiento Neurofisiológico/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Nervios Periféricos/fisiopatología , Enfermedades del Sistema Nervioso Periférico/diagnóstico por imagen , Enfermedades del Sistema Nervioso Periférico/fisiopatología
8.
Semin Musculoskelet Radiol ; 25(3): 433-440, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34547809

RESUMEN

Three-dimensional (3D) magnetic resonance imaging of the spine is now clinically feasible due to technological advancements. Its advantages over two-dimensional imaging include higher in-plane spatial resolution and the ability for reformation in any plane that enables time savings in image acquisition and aids more accurate interpretation. Multispectral 3D techniques for imaging around metal are sometimes useful for evaluating anatomy adjacent to spinal fixation hardware. 3D gradient-recalled echo sequences, including ultrashort or zero time to echo sequences, can provide osseous detail similar to conventional computed tomography.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Metales , Columna Vertebral/diagnóstico por imagen
9.
Skeletal Radiol ; 50(11): 2255-2266, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33961070

RESUMEN

OBJECTIVE: To evaluate ferumoxytol-enhanced vascular suppression for visualizing branch nerves of the brachial plexus in magnetic resonance (MR) neurography. MATERIALS AND METHODS: Signal simulations were performed to determine ferumoxytol's effect on nerve-, fat-, and blood-to-muscle contrast and to optimize pulse sequence parameters. Prospective, in vivo assessment included 10 subjects with chronic anemia who underwent a total of 19 (9 bilateral) pre- and post-infusion brachial plexus exams using three-dimensional (3D), T2-weighted short-tau inversion recovery (T2-STIR) sequences at 3.0 T. Two musculoskeletal radiologists qualitatively rated sequences for the degree of vascular suppression and brachial plexus branch nerve conspicuity. Nerve-to-muscle, -fat, and -vessel contrast ratios were measured. RESULTS: Quantitative nerve/muscle and nerve/small vessel contrast ratios (CRs) increased with ferumoxytol (p < 0.05). Qualitative vascular suppression and suprascapular nerve visualization improved following ferumoxytol administration for both raters (p < .05). Pre- and post-ferumoxytol exams demonstrated moderate to near-perfect inter-rater agreement for nerve visualization and diagnostic confidence for the suprascapular and axillary nerves but poor to no agreement for the long thoracic nerve. CONCLUSION: Ferumoxytol in T2-weighted brachial plexus MR neurography provides robust vascular suppression and aids visualization of the suprascapular nerve in volunteers without neuropathy.


Asunto(s)
Plexo Braquial , Óxido Ferrosoférrico , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Estudios Prospectivos
10.
Magn Reson Med ; 83(6): 2356-2369, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31763726

RESUMEN

PURPOSE: To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole-body 3.0T MR magnet. METHODS: A 42-cm inner diameter head-gradient used the available 89- to 91-cm warm bore space in a whole-body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole-body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole-body gradients, a double-layer primary coil design with asymmetric x-y axes, and symmetric z-axis was used. The use of all-hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. RESULTS: This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time (TE) < 50 ms was achieved (>50% reduction compared with whole-body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. CONCLUSIONS: Ultra-high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole-body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole-body 3.0T MR system could be upgraded with 3-4× improvement in gradient performance for brain imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Acústica , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Campos Magnéticos
11.
J Magn Reson Imaging ; 51(1): 296-310, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31111581

RESUMEN

BACKGROUND: Distortion-free, high-resolution diffusion imaging using DIADEM (Distortion-free Imaging: A Double Encoding Method), proposed recently, has great potential for clinical applications. However, it can suffer from prolonged scan times and its reliability for quantitative diffusion imaging has not been evaluated. PURPOSE: To investigate the clinical feasibility of DIADEM-based high-resolution diffusion imaging on a novel compact 3T (C3T) by evaluating the reliability of quantitative diffusion measurements and utilizing both the high-performance gradients (80 mT/m, 700 T/m/s) and the sequence optimization with the navigator acquisition window reduction and simultaneous multislice (multiband) imaging. STUDY TYPE: Prospective feasibility study. PHANTOM/SUBJECTS: Diffusion quality control phantom scans to evaluate the reliability of quantitative diffusion measurements; 36 normal control scans for B0 -field mapping; six healthy and two patient subject scans with a brain tumor for comparisons of diffusion and anatomical imaging. FIELD STRENGTH/SEQUENCE: 3T; the standard single-shot echo-planar-imaging (EPI), multishot DIADEM diffusion, and anatomical (2D-FSE [fast-spin-echo], 2D-FLAIR [fluid-attenuated-inversion-recovery], and 3D-MPRAGE [magnetization prepared rapid acquisition gradient echo]) imaging. ASSESSMENT: The scan time reduction, the reliability of quantitative diffusion measurements, and the clinical efficacy for high-resolution diffusion imaging in healthy control and brain tumor volunteers. STATISTICAL TEST: Bland-Altman analysis. RESULTS: The scan time for high in-plane (0.86 mm2 ) resolution, distortion-free, and whole brain diffusion imaging were reduced from 10 to 5 minutes with the sequence optimizations. All of the mean apparent diffusion coefficient (ADC) values in phantom were within the 95% confidence interval in the Bland-Altman plot. The proposed acquisition with a total off-resonance coverage of 597.2 Hz wider than the expected bandwidth of 500 Hz in human brain could yield a distortion-free image without foldover artifacts. Compared with EPI, therefore, this approach allowed direct image matching with the anatomical images and enabled improved delineation of the tumor boundaries. DATA CONCLUSION: The proposed high-resolution diffusion imaging approach is clinically feasible on C3T due to a combination of hardware and sequence improvements. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;51:296-310.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar , Estudios de Factibilidad , Humanos , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados
12.
Magn Reson Med ; 76(6): 1939-1950, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26628078

RESUMEN

PURPOSE: To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. METHODS: Two prototypes of an asymmetric head-only gradient coil set with a 42-cm inner diameter were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. Tests were performed in 24 volunteers to measure PNS thresholds with the transverse (x = left-right; y = anterior-posterior [A/P]) gradient coils of both prototypes. Fourteen of these 24 volunteers were also tested for the z-gradient PNS in the second prototype and were scanned with high-slew-rate echo planar imaging (EPI) immediately after the PNS tests. RESULTS: For both prototypes, the y-gradient PNS threshold was markedly higher than the x-gradient threshold. The z-gradient threshold was intermediate between those for the x- and y-coils. Of the 24 volunteers, only two experienced y-gradient PNS at 80 mT/m and 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. CONCLUSION: Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared with conventional whole body gradient coils. Magn Reson Med 76:1939-1950, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/fisiología , Terapia por Estimulación Eléctrica/instrumentación , Neuroestimuladores Implantables , Imagen por Resonancia Magnética/instrumentación , Nervios Periféricos/fisiología , Encéfalo/anatomía & histología , Terapia por Estimulación Eléctrica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Magn Reson Med ; 71(5): 1813-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23798360

RESUMEN

PURPOSE: To demonstrate dynamic slice-dependent shim update as a simple method to reduce susceptibility-induced B0 inhomogeneity and associated pixel shift artifacts in diffusion-weighted echo planar imaging (DW-EPI) in 3 T breast imaging. METHODS: Dynamic slice-dependent update of linear shim and center frequency was implemented in a dual-echo B0 mapping sequence and a DW-EPI sequence. Multi-slice axial B0 maps and diffusion-weighted images were obtained from four volunteers with both conventional and dynamic shim methods. The two shim methods were compared in terms of B0 homogeneity and EPI pixel shift artifacts. RESULTS: In all volunteers the B0 maps showed significantly improved homogeneity; the left-right asymmetry was reduced by 79% and within-slice B0 standard deviation was reduced by 20% on the average. The improvements were better than what was previously reported for conventional (static) third-order shim in bilateral breast. Anatomy-referenced apparent diffusion coefficient (ADC) maps showed reduced overall image registration error obtainable with dynamic shim. CONCLUSIONS: Dynamic shim is an effective method to improve B0 shimming and DW-EPI image quality in 3 T bilateral breast imaging. Magn Reson Med 71:1813-1818, 2014. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Mama/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Femenino , Humanos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Radiol Clin North Am ; 62(2): 229-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272617

RESUMEN

Pain and weakness in the low back, pelvis, and lower extremities are diagnostically challenging, and imaging can be an important step in the workup and management of these patients. Technical advances in magnetic resonance neurography (MRN) have significantly improved its utility for imaging the lumbosacral plexus (LSP). In this article, the authors review LSP anatomy and selected pathology examples. In addition, the authors will discuss technical considerations for MRN with specific points for the branch nerves off the plexus.


Asunto(s)
Plexo Lumbosacro , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Plexo Lumbosacro/anatomía & histología , Plexo Lumbosacro/patología , Espectroscopía de Resonancia Magnética
15.
J Neurosurg Spine ; : 1-9, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875728

RESUMEN

OBJECTIVE: The paraspinal muscles play an essential role in the stabilization of the lumbar spine. Lumbar paraspinal muscle atrophy has been linked to chronic back pain and degenerative processes within the spinal motion segment. However, the relationship between the different paraspinal muscle groups and facet joint osteoarthritis (FJOA) has not been fully explored. METHODS: In this cross-sectional study, the authors analyzed adult patients who underwent lumbar spinal surgery between December 2014 and March 2023 for degenerative spinal conditions and had preoperative MRI and CT scans. The fatty infiltration (FI) and functional cross-sectional area (fCSA) of the psoas, erector spinae, and multifidus muscles were assessed on axial T2-weighted MR images at the level of the upper endplate of L4 based on established studies and calculated using custom-made software. Intervertebral disc degeneration at each lumbar level was evaluated using the Pfirrmann grading system. The grades from each level were summed to report the cumulative lumbar Pfirrmann grade. Weishaupt classification (0-3) was used to assess FJOA at all lumbar levels (L1 to S1) on preoperative CT scans. The total lumbar FJOA score was determined by adding the Weishaupt grades of both sides at all 5 levels. Correlation and linear regression analyses were conducted to assess the relationship between FJOA and paraspinal muscle parameters. RESULTS: A total of 225 patients (49.7% female) with a median age of 61 (IQR 54-70) years and a median BMI of 28.3 (IQR 25.1-33.1) kg/m2 were included. After adjustment for age, sex, BMI, and the cumulative lumbar Pfirrmann grade, only multifidus muscle fCSA (estimate -4.69, 95% CI -6.91 to -2.46; p < 0.001) and FI (estimate 0.64, 95% CI 0.33-0.94; p < 0.001) were independently predicted by the total FJOA score. A similar relation was seen with individual Weishaupt grades of each lumbar level after controlling for age, sex, BMI, and the Pfirrmann grade of the corresponding level. CONCLUSIONS: Atrophy of the multifidus muscle is significantly associated with FJOA in the lumbar spine. The absence of such correlation for the erector spinae and psoas muscles highlights the unique link between multifidus muscle quality and the degeneration of the spinal motion segment. Further research is necessary to establish the causal link and the clinical implications of these findings.

16.
Pain ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38635483

RESUMEN

ABSTRACT: Lumbar medial branch radiofrequency neurotomy (RFN), a common treatment for chronic low back pain due to facet joint osteoarthritis (FJOA), may amplify paraspinal muscle atrophy due to denervation. This study aimed to investigate the asymmetry of paraspinal muscle morphology change in patients undergoing unilateral lumbar medial branch RFN. Data from patients who underwent RFN between March 2016 and October 2021 were retrospectively analyzed. Lumbar foramina stenosis (LFS), FJOA, and fatty infiltration (FI) functional cross-sectional area (fCSA) of the paraspinal muscles were assessed on preinterventional and minimum 2-year postinterventional MRI. Wilcoxon signed-rank tests compared measurements between sides. A total of 51 levels of 24 patients were included in the analysis, with 102 sides compared. Baseline MRI measurements did not differ significantly between the RFN side and the contralateral side. The RFN side had a higher increase in multifidus FI (+4.2% [0.3-7.8] vs +2.0% [-2.2 to 6.2], P = 0.005) and a higher decrease in multifidus fCSA (-60.9 mm2 [-116.0 to 10.8] vs -19.6 mm2 [-80.3 to 44.8], P = 0.003) compared with the contralateral side. The change in erector spinae FI and fCSA did not differ between sides. The RFN side had a higher increase in multifidus muscle atrophy compared with the contralateral side. The absence of significant preinterventional degenerative asymmetry and the specificity of the effect to the multifidus muscle suggest a link to RFN. These findings highlight the importance of considering the long-term effects of lumbar medial branch RFN on paraspinal muscle health.

17.
J Neurosurg Spine ; 40(3): 274-281, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134419

RESUMEN

OBJECTIVE: The cervical multifidus and rotatores muscles are innervated by the posterior rami of the spinal nerves of the corresponding level, and it has been hypothesized that cervical foraminal stenosis (CFS) affecting the spinal nerves results in changes in these muscles. The purpose of this study was to evaluate the relationship between the severity of CFS and fat infiltration (FI) of the multifidus and rotatores muscles. METHODS: Patients who received preoperative cervical MRI, underwent anterior cervical decompression and fusion between 2015 and 2018, and met inclusion and exclusion criteria were included. Multifidus and rotatores muscles were segmented bilaterally from C3 to C7, and the percent FI was measured using custom-written MATLAB software. The severity of the CFS was assessed by the Kim classification. Multivariable linear mixed models were conducted and adjusted for age, sex, BMI, and repeated measures. RESULTS: In total, 149 patients were included. Linear mixed modeling results showed that a more severe CFS at C3-4 was correlated with a greater FI of the multifidus and rotatores muscles at C4 (estimate 0.034, 95% CI 0.003-0.064; p = 0.031), a more severe CFS at C4-5 was correlated with a greater FI of the multifidus and rotatores muscles at C5 (estimate 0.037, 95% CI 0.015-0.057; p < 0.001), a more severe CFS at C5-6 was correlated with a greater FI of the multifidus and rotatores muscles at C6 (estimate 0.041, 95% CI 0.019-0.062; p < 0.001) and C7 (estimate 0.035, 95% CI 0.012-0.058; p = 0.003), and a more severe CFS at C6-7 was correlated with a greater FI of the multifidus and rotatores muscles at C7 (estimate 0.049, 95% CI 0.027-0.071; p < 0.001). CONCLUSIONS: These results demonstrated level- and side-specific correlations between the FI of the multifidus and rotatores muscles and severity of CFS. Given the segmental innervation of the multifidus and rotatores muscles, the authors hypothesize that the observed increased FI could be reflective of changes due to muscle denervation from CFS.


Asunto(s)
Discectomía , Músculos Paraespinales , Humanos , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/cirugía , Constricción Patológica , Programas Informáticos
18.
J Neurosurg Spine ; : 1-9, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848601

RESUMEN

OBJECTIVE: There are limited data about the influence of the lumbar paraspinal muscles on the maintenance of sagittal alignment after pedicle subtraction osteotomy (PSO) and the risk factors for sagittal realignment failure. The authors aimed to investigate the influence of preoperative lumbar paraspinal muscle quality on the postoperative maintenance of sagittal alignment after lumbar PSO. METHODS: Patients who underwent lumbar PSO with preoperative lumbar MRI and pre- and postoperative whole-spine radiography in the standing position were included. Spinopelvic measurements included pelvic incidence, sacral slope, pelvic tilt, L1-S1 lordosis, T4-12 thoracic kyphosis, spinosacral angle, C7-S1 sagittal vertical axis (SVA), T1 pelvic angle, and mismatch between pelvic incidence and L1-S1 lordosis. Validated custom software was used to calculate the percent fat infiltration (FI) of the psoas major, as well as the erector spinae and multifidus (MF). A multivariable linear mixed model was applied to further examine the association between MF FI and the postoperative progression of SVA over time, accounting for repeated measures over time that were adjusted for age, sex, BMI, and length of follow-up. RESULTS: Seventy-seven patients were recruited. The authors' results demonstrated significant correlations between MF FI and the maintenance of corrected sagittal alignment after PSO. After adjustment for the aforementioned parameters, the model showed that the MF FI was significantly associated with the postoperative progression of positive SVA over time. A 1% increase from the preoperatively assessed total MF FI was correlated with an increase of 0.92 mm in SVA postoperatively (95% CI 0.42-1.41, p < 0.0001). CONCLUSIONS: This study included a large patient cohort with midterm follow-up after PSO and emphasized the importance of the lumbar paraspinal muscles in the maintenance of sagittal alignment correction. Surgeons should assess the quality of the MF preoperatively in patients undergoing PSO to identify patients with severe FI, as they may be at higher risk for sagittal decompensation.

19.
Spine (Phila Pa 1976) ; 49(9): 621-629, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38098290

RESUMEN

STUDY DESIGN: Retrospective review of prospectively collected data. OBJECTIVE: The authors aim to investigate the association between muscle functional group characteristics and sagittal alignment parameters in patients undergoing anterior cervical discectomy and fusion. SUMMARY OF BACKGROUND DATA: The relationship between the morphology of cervical paraspinal muscles and sagittal alignment is not well understood. MATERIALS AND METHODS: Patients with preoperative cervical magnetic resonance imaging and cervical spine lateral radiographs in standing position who underwent anterior cervical discectomy and fusion between 2015 and 2018 were reviewed. Radiographic alignment parameters included C2 to 7 lordosis, C2 to 7 sagittal vertical axis (SVA), C2 slope, neck tilt, T1 slope, and thoracic inlet angle. Muscles from C3 to C7 were categorized into four functional groups: sternocleidomastoid group, anterior group, posteromedial group, and posterolateral group (PL). A custom-written Matlab software was used to assess the functional cross-sectional area (fCSA) and percent fat infiltration (FI) for all groups. Multivariable linear regression analyses were conducted and adjusted for age, sex, and body mass index. RESULTS: A total of 172 patients were included. Regression analyses demonstrated that a greater C2 to 7 SVA was significantly associated with a greater FI of the anterior group from C3 to C5 and with a higher fCSA of the PL group at C3 to C4, and C6 to 7. A larger C2 slope was significantly correlated with a greater FI of the anterior group at C3 to C4 and a higher fCSA of the PL group from C3 to C5. CONCLUSION: This work proposes new insights into the complex interaction between sagittal alignment and cervical paraspinal muscles by emphasizing the importance of these muscles in sagittal alignment. The authors hypothesize that with cervical degeneration, the stabilizing function of the anterior muscles decreases, which may result in an increase in the compensatory mechanism of the PL muscles. Consequently, there may be a corresponding increase in the C2 to C7 SVA and a larger C2 slope.


Asunto(s)
Vértebras Cervicales , Lordosis , Humanos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Músculos Paraespinales/diagnóstico por imagen , Cuello , Lordosis/diagnóstico por imagen , Lordosis/cirugía , Músculos del Cuello , Estudios Retrospectivos
20.
J Neurosurg Spine ; : 1-10, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701526

RESUMEN

OBJECTIVE: The aim of this study was to investigate the influence of preoperatively assessed paraspinal muscle parameters on postoperative patient-reported outcomes and maintenance of cervical sagittal alignment after anterior cervical discectomy and fusion (ACDF). METHODS: Patients with preoperative and postoperative standing cervical spine lateral radiographs and preoperative cervical MRI who underwent an ACDF between 2015 and 2018 were reviewed. Muscles from C3 to C7 were segmented into 4 functional groups: anterior, posteromedial, posterolateral, and sternocleidomastoid. The functional cross-sectional area and also the percent fat infiltration (FI) were calculated for all groups. Radiographic alignment parameters collected preoperatively and postoperatively included C2-7 lordosis and C2-7 sagittal vertical axis (SVA). Neck Disability Index (NDI) scores were recorded preoperatively and at 2 and 4-6 months postoperatively. To investigate the relationship between muscle parameters and postoperative changes in sagittal alignment, multivariable linear mixed models were used. Multivariable linear regression models were used to analyze the correlations between the changes in NDI scores and the muscles' FI. RESULTS: A total of 168 patients with NDI and 157 patients with sagittal alignment measurements with a median follow-up of 364 days were reviewed. The mixed models showed that a greater functional cross-sectional area of the posterolateral muscle group at each subaxial level and less FI at C4-6 were significantly associated with less progression of C2-7 SVA over time. Moreover, there was a significant correlation between greater FI of the posteromedial muscle group measured at the C7 level and less NDI improvement at 4-6 months after ACDF. CONCLUSIONS: The findings highlight the importance of preoperative assessment of the cervical paraspinal muscle morphology as a predictor for patient-reported outcomes and maintenance of C2-7 SVA after ACDF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA